Lake Chemistry and Physical Data For Selected North Slope, Alaska, Lakes: October 2006



Photo of October conditions in the Brooks Range, by J. Derry.

by

Kristie Holland, Michael Lilly, Jeff Derry, and Daniel Reichardt

September 2007

North Slope Lakes Hydrologic Modeling Project Report No. INE/WERC 07.02











# Lake Chemistry and Physical Data For Selected North Slope, Alaska, Lakes: October 2006

by

Kristie Holland<sup>1</sup>, Michael Lilly<sup>1</sup>, Jeff Derry<sup>1</sup>, Dan Reichardt<sup>1</sup>

A report on research sponsored by the

Alaska Department of Energy, National Energy Technology Laboratory, BP Exploration (Alaska) Inc., ConocoPhillips Alaska, Inc., and the Bureau of Land Management.

September 2007 North Slope Lakes Hydrologic Modeling Project Report Number INE/WERC 07.02

<sup>1</sup>Geo-Watersheds Scientific, Fairbanks, Alaska

#### **Recommended Citation:**

Holland, K.M., Derry, J.E., Reichardt, D.A., and Lilly, M.R., 2007. Lake chemistry and physical data for selected North Slope, Alaska, lakes: October 2006. University of Alaska Fairbanks, Water and Environmental Research Center, Report INE/WERC 07.02, Fairbanks, Alaska, 7 p.

Fairbanks, Alaska September 2007

For additional copies write to:

Publications, Water and Environmental Research Center University of Alaska Fairbanks Fairbanks, Alaska 99775 www.uaf.edu/water/ For Project Information write to:

Daniel White- Project Manager Box 5860, WERC, UAF Fairbanks, AK 99775-5860 907-474-6222, <u>ffdmw@uaf.edu</u>

# TABLE OF CONTENTS

| i    |
|------|
| i    |
| iii  |
|      |
| iv   |
| viii |
| viii |
| 1    |
| 2    |
|      |
| 5    |
| 6    |
| 7    |
| A-1  |
| B-1  |
| C-1  |
| D-1  |
|      |

# LIST OF FIGURES

| Figure 1. Location of study lakes in NPR-A, Alpine, Kuparuk, and Prudhoe Bay field operating  |   |
|-----------------------------------------------------------------------------------------------|---|
| areas, North Slope, Alaska                                                                    | 2 |
| Figure 2 Precipitation gauge at the L9312 weather station, photo by J. Derry                  | 4 |
| Figure 3. Water quality profile of Mine Site B- North Cell, including temperature DO, ORP and | l |
| pH                                                                                            | 6 |

# LIST OF TABLES

| Table 2. I | ce thickness, Median DO Concentration, Median Actual Conductance, Median |   |
|------------|--------------------------------------------------------------------------|---|
| Tem        | perature, and Median Depth of selected locations in mid-October.         | 5 |
| Table 3.   | Average and maximum snow depths for L9312 and KDA-2 [cm]                 | 5 |

## DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the accuracy of the data presented herein. This research was funded by the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL). Funding and support was also provided by the Bureau of Land Management (BLM), BP Exploration (Alaska) Inc. (BPX), ConocoPhillips Alaska, Inc. (CPA), and Geo-Watersheds Scientific (GWS). The contents of the report do not necessarily reflect the views or policies of the DOE, NETL, BLM, BPX, CPA, GWS, or any local sponsor. This work does not constitute a standard, specification, or regulation.

The use of trade and firm names in this document is for the purpose of identification only and does not imply endorsement by the University of Alaska Fairbanks, DOE, NETL, BLM, BPX, CPA, GWS, or other project sponsors.

# CONVERSION FACTORS, UNITS, WATER QUALITY UNITS, VERTICAL AND HORIZONTAL DATUM, ABBREVIATIONS AND SYMBOLS

## **Conversion Factors**

| Multiply                           | By                         | To obtain                           |
|------------------------------------|----------------------------|-------------------------------------|
|                                    | T (1                       |                                     |
| Inch (in)                          | Length<br>25.4             | millimator (mm)                     |
| Inch (in)<br>Inch (in)             | 2.54                       | millimeter (mm)<br>centimeter (cm)  |
| Foot (ft)                          | 0.3048                     | meter (m)                           |
| mile (mi)                          | 1.609                      | kilometer (km)                      |
|                                    | 1.009                      | kilometer (kili)                    |
|                                    | Area                       |                                     |
| Acre                               | 43560.0                    | square feet (ft <sup>2</sup> )      |
| Acre                               | 0.405                      | hectare (ha)                        |
| square foot (ft <sup>2</sup> )     | 3.587e-8                   | square mile (mi <sup>2</sup> )      |
| square mile (mi <sup>2</sup> )     | 2.590                      | square kilometer (km <sup>2</sup> ) |
|                                    | <b>T</b> 7 1               |                                     |
| 11 ( 1)                            | <u>Volume</u>              | 1', (T.)                            |
| gallon (gal)                       | 3.785                      | liter (L)                           |
| gallon (gal)                       | 3785.412                   | milliliter (mL)                     |
| cubic foot $(ft^3)$                | 28.317                     | liter (L)                           |
| Acre-ft                            | 1233.482                   | cubic meter $(m^3)$                 |
| Acre-ft                            | 325851.43                  | gallon(gal)                         |
| gallon(gal)                        | 0.1337                     | cubic feet (ft <sup>3</sup> )       |
|                                    | Velocity and Discharge     |                                     |
| foot per day (ft/d)                | 0.3048                     | meter per day (m/d)                 |
| Square foot per day $(ft^2/d)$     | 0.0929                     | square meter per day $(m^2/d)$      |
| cubic foot per second ( $ft^3/s$ ) | 0.02832                    | cubic meter per second $(m^3/sec)$  |
| •                                  |                            | •                                   |
|                                    | Hydraulic Conductivity     |                                     |
| foot per day (ft/d)                | 0.3048                     | meter per day (m/d)                 |
| foot per day (ft/d)                | 0.00035                    | centimeter per second (cm/sec)      |
| meter per day (m/d)                | 0.00116                    | centimeter per second (cm/sec)      |
|                                    | Unduculia Cuedicat         |                                     |
| foot per foot (ft/ft)              | Hydraulic Gradient<br>5280 | foot per mile (ft/mi)               |
| foot per mile (ft/m)               | 0.1894                     | meter per kilometer (m/km)          |
|                                    | 0.1074                     | meter per knometer (m/km)           |
|                                    | Pressure                   |                                     |
| pound per square inch $(lb/in^2)$  | 6.895                      | kilopascal (kPa)                    |
|                                    |                            | • • • •                             |

### Units

For the purposes of this report, both English and Metric (SI) units were employed. The choice of "primary" units employed depended on common reporting standards for a particular property or parameter measured. Whenever possible, the approximate value in the "secondary" units was also provided in parentheses. Thus, for instance, stream flow was reported in cubic feet per second (cfs) followed by the value in cubic meters per second ( $m^3/s$ ) in parentheses.

### **Physical and Chemical Water-Quality Units:**

### Temperature:

Water and air temperature is given in degrees Celsius (°C) and in degrees Fahrenheit (°F). Degrees Celsius can be converted to degrees Fahrenheit by use of the following equation:

 $^{\circ}F = 1.8(^{\circ}C) + 32$ 

### Electrical Conductance (Actual Conductivity and Specific Conductance):

In this report conductivity of water is expressed as Actual Conductivity [AC] in microSiemens per centimeter ( $\mu$ S/cm). This unit is equivalent to micromhos per centimeter. Elsewhere, conductivity is commonly expressed as Specific Conductance at 25°C [SC25] in  $\mu$ S/cm which is temperature corrected. To convert AC to SC25 the following equation can be used:

$$SC25 = \frac{AC}{1 + r(T - 25)}$$

where:

SC25 = Specific Conductance at 25°C, in µS/cmAC = Actual Conductivity, in µS/cm R = temperature correction coefficient for the sample, in °C T = temperature of the sample, in °C

## Milligrams per liter (mg/L) or micrograms per liter (µg/L):

Milligrams per liter is a unit of measurement indicating the concentration of chemical constituents in solution as weight (milligrams) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter. For concentrations less than 7,000 mg/L, the numerical value is the same as for concentrations in parts per million (ppm).

## Millivolt (mV):

A unit of electromotive force equal to one thousandth of a volt.

## Vertical Datum:

"Sea level" in the following report refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929), a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called *Sea Level Datum of 1929*.

## Horizontal Datum:

The horizontal datum for all locations in this report is the North American Datum of 1983 or North American Datum of 1927.

# Abbreviations, Acronyms, and Symbols

| AC                 | Actual conductivity                                       |
|--------------------|-----------------------------------------------------------|
| ADOT&PF            | Alaska Department of Transportation and Public Facilities |
| ASTM               | American Society for Testing and Materials                |
| atm                | atmospheres                                               |
| С                  | Celsius                                                   |
| DO                 | Dissolved oxygen                                          |
| DVM                | digital voltage multi-meter                               |
| e-tape             | electric tape                                             |
| F                  | Fahrenheit (°F).                                          |
| ft                 | feet                                                      |
| GWS                | Geo-Watersheds Scientific                                 |
| GWSI               | USGS Ground-Water Site Inventory                          |
| km <sup>2</sup>    | square kilometers                                         |
| kPa                | kilopascal                                                |
| lb/in <sup>2</sup> | pounds per square inch                                    |
| m                  | meters                                                    |
| mg/L               | milligrams per liter, equivalent to ppm                   |
| μg/L               | micrograms per liter                                      |
| $mi^2$             | square miles                                              |
| mm                 | millimeters                                               |
| µS/cm              | microsiemens per centimeter                               |
| mV                 | Millivolt                                                 |
| NGVD               | National Geodetic Vertical Datum                          |
| NWIS               | National Water Information System                         |
| ORP                | oxygen-reduction potential                                |
| ppm                | parts per million, equivalent to mg/L                     |
| SC25               | specific conductance at 25°C                              |
| QA                 | quality assurance                                         |
| QC                 | quality control                                           |
| UAF                | University of Alaska Fairbanks                            |
| USACE              | U.S. Army Corps of Engineers, Alaska District             |
| USGS               | U.S. Geological Survey                                    |
| WERC               | Water and Environmental Research Center                   |
| WWW                | World Wide Web                                            |
| YSI                | Yellow Springs Instruments                                |
|                    |                                                           |

# **PROJECT COOPERATORS**

The North Slope Lakes project covers a large area of the North Slope and benefits from a number of positive partnerships, all contributing to the overall project objectives.

- Bureau of Land Management
- > BP Exploration (Alaska) Inc.
- ConocoPhillips Alaska (CPA)
- Alaska Department of Natural Resources
- The Nature Conservancy
- Northern Alaska Environmental Center

# ACKNOWLEDGEMENTS

This project was funded by cooperative agreement number DE-FC26\_01NT41248, from the U.S. Department of Energy's (DOE) Arctic Energy Office to the University of Alaska- Fairbanks Arctic Energy Technology Development Laboratory (AETDL). Field coordination and logistics support were provided by BP Exploration (Alaska) Inc. and ConocoPhillips Alaska. Additional support was provided by other project cooperators, Geo-Watersheds Scientific (GWS), North Slope Borough, Bureau of Land Management (BLM), and National Weather Service in the form of financial and in-kind match

# Lake Chemistry and Physical Data For Selected North Slope, Alaska, Lakes: October 2006

## INTRODUCTION

The University of Alaska Fairbanks (UAF) Water and Environmental Research Center (WERC) and Geo-Watersheds Scientific (GWS), together with project cooperators, initiated a study in the Fall of 2002 (Phase One) to obtain baseline information about the physical and chemical characteristics of North Slope tundra lakes. The project was extended in 2005 (Phase Two). The location of the study lakes changed and was expanded to include other reservoirs so as to further develop the understanding and simulation tools necessary for water-source management. K113 is an un-pumped lake in the Kuparuk oilfield and is sampled on selected field trips during the year. L9312 is a natural lake studied in the Alpine operations area. L9817 is a natural lake in eastern NPRA, west of Nuigsut. L9817 has been used in previous years for ice-road construction, but was not used during winter 2005-06, nor will be used during the winter of 2006-07. Two reservoir systems (mine sites) were added to the study in 2005. Mine Site B, also known as Sixmile Lake, is located near the Milne Point facility at the intersection of the Spine Road with the Milne Point access road and has two cells connected to Milne Creek. The Kuparuk Reservoir System (Kuparuk Deadarm Lakes) has nine reservoirs. The three southernmost reservoir cells (1-3) are included in the study to observe ground-water and surface-water interactions between each cells and the adjacent Kuparuk River.

Water-quality and hydrologic data is collected in the field during monthly visits to the lakes and water samples are collected from priority locations for further analysis at the UAF-WERC chemistry laboratories. The purposes of this publication are to 1) report data collected for the month of October 2006, 2) summarize accomplished field trip objectives.

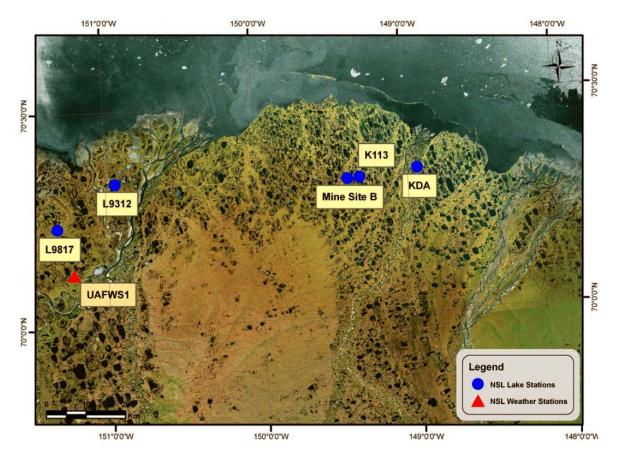



Figure 1. Location of study lakes in NPR-A, Alpine, Kuparuk, and Prudhoe Bay field operating areas, North Slope, Alaska.

# **TRIP OBJECTIVES**

The goal of each sampling trip is to collect physical and chemical data from each study lake. For each lake, a series of holes are drilled at designated sampling locations. Logistical, personnel, and weather constraints, can limit the amount of time available in the field for sampling. A project workplan was distributed before the trip outlining the sampling schedule (Lilly and others, 2006). In October, we focused on the following locations/tasks:

- 1. Kuparuk Dead Arm Reservoirs (1-5): Prudhoe Bay operating area.
  - Survey water levels to local elevation control on cells 1, 2, 3, and 4.
  - Install automated data collection stations at cell 2 for water temperature monitoring.
  - Measure snow depth, ice thickness, and field water quality parameters for cell 2.
  - Conduct snow survey.

- 2. Mine Site B: Prudhoe Bay operating area.
  - Survey water levels to North and South Cells.
  - Install automated data collection stations at North cell for water temperature monitoring.
  - Measure water quality parameters at North Cell and stream.
  - Establish snow survey location for the winter of 2006.
- 3. L9312: Alpine Facility.
  - Survey water surface elevation of lake and surface gradient transect.
  - Survey lake outlet control elevation system and inspect for problems.
  - Inspect automated data-collection system and service Belfort snow gage.
  - Conduct snow survey.

## **PROCEDURES**

All field work follows the specified health, safety, and environmental guidelines outlined by BPX and CPA (White and Lilly, 2006 a,b,c). Physical measurements of water depth (top of water to bottom of lake), ice thickness (top of ice to bottom of ice), freeboard (top of water to top of ice), and snow depth (top of ice to top of snow), were taken at each sampling location. Water quality parameters such as temperature, pH, conductivity, and dissolved oxygen (DO) were obtained in-situ by using an In-Situ Troll 9000 (submersible meter), at several depths throughout the water column. The precision with which physical measurements were reported takes into account field conditions, and the calibration of each parameter was checked before and after each day of sampling using the criteria in Table 1.

| Parameter    | Standards used           | Acceptable deviation from calibration standard value |
|--------------|--------------------------|------------------------------------------------------|
| Turbidity    | Factory calibrated       | ± 2 (NTU)                                            |
| pH           | 4.01, 7.0, 10.0          | $\pm 0.2$                                            |
| Conductivity | 447 (µs/cm)              | within 10%                                           |
| 100% DO      | 100 % saturated          | within 10%                                           |
| 0% DO        | 0 % saturated solution   | within 0.3 mg/L                                      |
| ORP          | In-Situ Quick Cal 224 mV | within 10%                                           |

 Table 1. In-Situ Troll 9000 calibration quality control criteria.



Figure 2. . Precipitation gauge at the L9312 weather station, photo by J. Derry.

## SELECTED RESULTS

Water quality sampling was limited due to time restrictions and prior obligations to installation of weather stations and winter sampling preparation. A few locations were chosen for baseline measurements which could be used for comparative purposes throughout the year. Table 2 summarizes conditions at the priority sampling sites. These locations have more historical data and have been chosen to represent other water bodies in the area.

 Table 2. Ice thickness, Median DO Concentration, Median Actual Conductance, Median Temperature, and

 Median Depth of selected locations in mid-October.

| Sampling Site | Median DO           | Median Actual       | Median          | Median Depth |
|---------------|---------------------|---------------------|-----------------|--------------|
|               | Concentration[mg/L] | Conductivity[µS/cm] | Temperature [C] | [ft]         |
| KDA-2         | -                   | 93.35               | 0.18            | 12           |
| MSB-NC        | 12.67               | -                   | 0.155           | 19           |
| MSB-Stream    | 8.18                | 207.7               | -0.25           | 2.5          |

The October sampling trip was unique in that the primary objective was not to collect data, but to solidify winter sampling procedures and to install new data stations at the Kuparuk Deadarm Reservoirs (KDA-2) and at Mine Site B (North Cell). Snow surveys were conducted at L9312 and KDA, but were not possible at Mine Site B due to a lack of snow. Table 3 summarizes the results. In addition to the installation/maintenance of data stations and identifying winter snow survey locations, thorough elevation surveys were conducted at each lake while weather conditions were optimal. Once winter is in full force, these tasks may be hindered by snow, wind, and/or temperature.

Table 3. Average and maximum snow depths for L9312 and KDA-2 [cm].

|       | Average    | Maximum    |
|-------|------------|------------|
|       | Depth (cm) | Depth (cm) |
| L9312 | 7.4        | 18.0       |
| KDA-2 | 5.2        | 8.0        |

Water quality parameters such as dissolved oxygen, pH, temperature, conductivity, and/or

turbidity were collected at Mine Site B and the Kuparuk Deadarm Reservoir Cell 2 for baseline information. Figure 3 summarizes the conditions at MSB before the onset of winter.

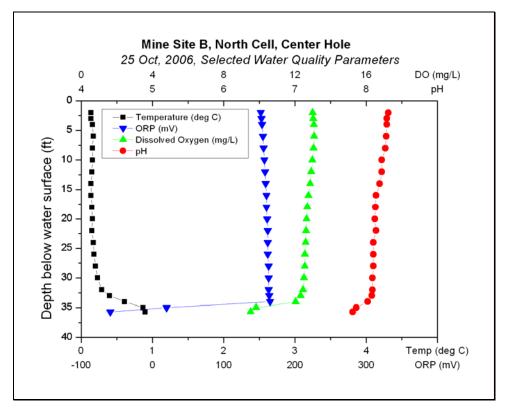



Figure 3. Water quality profile of Mine Site B- North Cell, including temperature DO, ORP and pH.

## SUMMARY

Continuous monitoring of the water-quality parameters seen in North Slope lakes throughout the winter will help in the understanding and development of simulation tools necessary for water resource management. As water levels change due to freezing and pumping activities in the winter, it is important to identify the changing water chemistry as well as the potential spring recharge. This information is important for permitting agencies as well as the industry professionals who depend on this resource for facility use and ice road/pad construction. Through monthly hydrologic assessments, water-chemistry testing, and water-sample analysis, we hope to answer some of the questions brought forth on the effects of mid-winter pumping of North Slope lakes.

## REFERENCES

- Lilly, M.R., Derry, J., and Reichardt, D. 2006. A Workplan for Chemistry Sampling and Surveying at Lakes in NPRA, Alpine, and Kuparuk River Areas: October 2006. Water and Environmental Research Center, University of Alaska Fairbanks. 13 p.
- White, D.M., and Lilly, M.R. 2006 *a*. BPX: Health, Safety, and Environmental InterfaceDocument. Water and Environmental Research Center, University of Alaska Fairbanks. 4p.
- White, D.M., and Lilly, M.R. 2006 *b*. BPX: Health, Safety, and Environmental Plan. Water and Environmental Research Center, University of Alaska Fairbanks. 6 p.
- White, D.M., and Lilly, M.R. 2006 c. ConocoPhillips Alaska, Inc.: Health, Safety, and Environmental Plan. Water and Environmental Research Center, University of Alaska Fairbanks. 5 p.

# APPENDIX A. WATER QUALITY FIELD SAMPLING FORMS

The following forms report the data collected with the water quality meters during field sampling.

| Project ID:          | North Slope La | kes                          | Site Location/Lake ID: | MS    | BN-CT |
|----------------------|----------------|------------------------------|------------------------|-------|-------|
| Sample Purpose:      | Lake Water Qu  | ality                        | Date: 10/25/06         | Time: | nr    |
| FIELD MEASUREMENTS   |                |                              |                        |       |       |
| GPS Coord. Northing: | N70°19.280'    | Easting: W149°24.009'        | Datum: NAD83           |       |       |
| Measurements By:     | DAR            | Time: nr                     |                        |       |       |
| Water Depth (ft):    | n/a            | Ice Thickness (ft): n/a      |                        |       |       |
| Freeboard (ft):      | n/a            | Snow Depth (ft): n/a         |                        |       |       |
| Elev. (BPMSL +/02):  | 96.16          | Survey By: MRL               | Date: 10/25/07         | Time: | nr    |
| Water Sampling By:   | DAR            | Sample Depths BWS (ft): 1 na | Date: na               | Time: | na    |
|                      |                | 2                            |                        |       |       |

3

#### WATER QUALITY METER INFORMATION Calibration Information

| Parameter (s)         | Owner | Owner Meter Make/Model |             |       |       | Pre-Sampling<br>QAQC Check |        | Post-Sampling<br>QAQC Check |       |       |
|-----------------------|-------|------------------------|-------------|-------|-------|----------------------------|--------|-----------------------------|-------|-------|
| Multi                 | GWS   | In-S                   | itu Troll 9 | 000   | 33033 |                            | PASS   |                             | PASS  |       |
|                       |       |                        |             |       |       |                            |        |                             |       |       |
| Parameters            |       | r                      |             |       | Field | d Measure                  | ements |                             |       |       |
| Time:                 | nr    | nr                     | nr          | nr    | nr    | nr                         | nr     | nr                          | nr    | nr    |
| Depth BWS (ft):       | 2     | 3                      | 4           | 6     | 8     | 10                         | 12     | 14                          | 16    | 18    |
| Temp (°C):            | 0.14  | 0.14                   | 0.16        | 0.17  | 0.16  | 0.16                       | 0.15   | 0.14                        | 0.14  | 0.15  |
| pH:                   | 8.31  | 8.29                   | 8.29        | 8.28  | 8.27  | 8.22                       | 8.22   | 8.19                        | 8.14  | 8.13  |
| Barometeric (mmHg):   |       |                        |             |       |       |                            |        |                             |       |       |
| Pressure (kPa):       |       |                        |             |       |       |                            |        |                             |       |       |
| Conductivity (ųS/cm): |       |                        |             |       |       |                            |        |                             |       |       |
| RDO (ppm): (mg/L)     | 13.00 | 13.03                  | 13.06       | 13.08 | 13.05 | 12.98                      | 12.91  | 12.85                       | 12.76 | 12.69 |
| Turbidity (NTU):      |       |                        |             |       |       |                            |        |                             |       |       |
| ORP                   | 152   | 153                    | 154         | 155   | 156   | 157                        | 158    | 159                         | 160   | 160   |
|                       |       |                        |             |       |       |                            |        |                             |       |       |
|                       |       |                        |             |       |       |                            |        |                             |       |       |

| FIELD TESTING OF WATER SAMPLES (if small probe is used) |  |  |  |  |  |  |  |  |
|---------------------------------------------------------|--|--|--|--|--|--|--|--|
| Probe:                                                  |  |  |  |  |  |  |  |  |
| Depth (ft)                                              |  |  |  |  |  |  |  |  |
| Temp (°C)                                               |  |  |  |  |  |  |  |  |
| pН                                                      |  |  |  |  |  |  |  |  |
| Eh                                                      |  |  |  |  |  |  |  |  |

#### NORTH SLOPE LAB CHEMISTRY ANALYSIS

| Parameter                                                       | Depth E | BWS (ft):_ |       | Depth | BWS (ft): |       | Depth | BWS (ft): |       | Method                      |
|-----------------------------------------------------------------|---------|------------|-------|-------|-----------|-------|-------|-----------|-------|-----------------------------|
|                                                                 | rep 1   | rep 2      | rep 3 | rep 1 | rep 2     | rep 3 | rep 1 | rep 2     | rep 3 |                             |
| Oxygen (mg/L)                                                   |         |            |       |       |           |       |       |           |       | Hach spec<br>0.3-15 mg/L    |
| Alkalinity (mg/L as CaCO₃)                                      |         |            |       |       |           |       |       |           |       | 10-4000 mg/L as<br>CaCO3    |
| Total ironUF (mg/L)                                             |         |            |       |       |           |       |       |           |       | Hach spec<br>0.02-3.00 mg/L |
| Filtered IronF tot Fe (mg/L)                                    |         |            |       |       |           |       |       |           |       | Hach spec<br>0.02-3.00 mg/L |
| Ammonia (mg/L NH <sub>3</sub> -N)****                           |         |            |       |       |           |       |       |           |       | 0.01-0.50 mg/L NH3-         |
| Ammonia/ Iron dilution                                          |         |            |       |       |           |       |       |           |       |                             |
|                                                                 |         |            |       |       |           |       |       |           |       |                             |
|                                                                 |         |            |       |       |           |       |       |           |       |                             |
| Remarks: Sample taken from Raw Water tap. Supply is from L9312. |         |            |       |       |           |       |       |           |       |                             |

Field-Form Filled Out By: QAQC Check By: Date: 9/9/07 K. Holland A. Blackburn Date: 9/12/07

| Project ID:          | North Slope Lak | kes                          | Site Location/Lake ID: | MS    | BN-CT |
|----------------------|-----------------|------------------------------|------------------------|-------|-------|
| Sample Purpose:      | Lake Water Qua  | lity                         | Date: 10/25/06         | Time: | nr    |
| FIELD MEASUREMENTS   |                 |                              |                        |       |       |
| GPS Coord. Northing: | N70°19.280'     | Easting: W149°24.009'        | Datum: NAD83           |       |       |
| Measurements By:     | DAR             | Time: nr                     |                        |       |       |
| Water Depth (ft):    | n/a             | Ice Thickness (ft): n/a      |                        |       |       |
| Freeboard (ft):      | n/a             | Snow Depth (ft): n/a         |                        |       |       |
| Elev. (BPMSL +/02):  | 96.16           | Survey By: MRL               | Date: 10/25/07         | Time: | nr    |
| Water Sampling By:   | DAR             | Sample Depths BWS (ft): 1 na | Date: na               | Time: | na    |
|                      |                 | 2                            |                        |       |       |

3

#### WATER QUALITY METER INFORMATION Calibration Information

| Parameter (s)         | Owner | Meter Make/Model |                    | Serial No. |       | Pre-Sampling<br>QAQC Check |        | Post-Sampling<br>QAQC Check |      |      |
|-----------------------|-------|------------------|--------------------|------------|-------|----------------------------|--------|-----------------------------|------|------|
| Multi                 | GWS   | In-S             | In-Situ Troll 9000 |            |       | 33033                      |        | SS                          | PASS |      |
|                       |       |                  |                    |            |       |                            |        |                             |      |      |
| Parameters            |       |                  |                    |            | Field | I Measure                  | ements |                             |      |      |
| Time:                 | nr    | nr               | nr                 | nr         | nr    | nr                         | nr     | nr                          | nr   | nr   |
| Depth BWS (ft):       | 20    | 22               | 24                 | 26         | 28    | 30                         | 32     | 34                          | 35   | 35.7 |
| Temp (°C):            | 0.16  | 0.15             | 0.17               | 0.18       | 0.20  | 0.23                       | 0.29   | 0.61                        | 0.87 | 0.9  |
| pH:                   | 8.12  | 8.14             | 8.10               | 8.10       | 8.10  | 8.09                       | 8.09   | 8.02                        | 7.86 | 7.81 |
| Barometeric (mmHg):   |       |                  |                    |            |       |                            |        |                             |      |      |
| Pressure (kPa):       |       |                  |                    |            |       |                            |        |                             |      |      |
| Conductivity (ųS/cm): |       |                  |                    |            |       |                            |        |                             |      |      |
| RDO (ppm): (mg/L)     | 12.65 | 12.62            | 12.60              | 12.56      | 12.55 | 12.51                      | 12.46  | 12.04                       | 9.82 | 9.51 |
| Turbidity (NTU):      |       |                  |                    |            |       |                            |        |                             |      |      |
| ORP                   | 161   | 162              | 162                | 162        | 163   | 163                        | 163    | 165                         | 20   | -59  |
|                       |       |                  |                    |            |       |                            |        |                             |      |      |

| FIELD TES  | TING OF WATER S | SAMPLES | if small | probe is u | sed) |  |  |  |  |  |  |
|------------|-----------------|---------|----------|------------|------|--|--|--|--|--|--|
| Probe:     |                 |         |          |            |      |  |  |  |  |  |  |
| Depth (ft) |                 |         |          |            |      |  |  |  |  |  |  |
| Temp (°C)  |                 |         |          |            |      |  |  |  |  |  |  |
| pН         |                 |         |          |            |      |  |  |  |  |  |  |
| Eh         |                 |         |          |            |      |  |  |  |  |  |  |

#### NORTH SLOPE LAB CHEMISTRY ANALYSIS

| Parameter                               | Depth E                                                         | BWS (ft):_ |       | Depth | BWS (ft): |       | Depth | BWS (ft): |       | Method                      |  |
|-----------------------------------------|-----------------------------------------------------------------|------------|-------|-------|-----------|-------|-------|-----------|-------|-----------------------------|--|
|                                         | rep 1                                                           | rep 2      | rep 3 | rep 1 | rep 2     | rep 3 | rep 1 | rep 2     | rep 3 |                             |  |
| Oxygen (mg/L)                           |                                                                 |            |       |       |           |       |       |           |       | Hach spec<br>0.3-15 mg/L    |  |
| Alkalinity (mg/L as CaCO <sub>3</sub> ) |                                                                 |            |       |       |           |       |       |           |       | 10-4000 mg/L as<br>CaCO3    |  |
| Total ironUF (mg/L)                     |                                                                 |            |       |       |           |       |       |           |       | Hach spec<br>0.02-3.00 mg/L |  |
| Filtered IronF tot Fe (mg/L)            |                                                                 |            |       |       |           |       |       |           |       | Hach spec<br>0.02-3.00 mg/L |  |
| Ammonia (mg/L NH <sub>3</sub> -N)****   |                                                                 |            |       |       |           |       |       |           |       | 0.01-0.50 mg/L NH3-         |  |
| Ammonia/ Iron dilution                  |                                                                 |            |       |       |           |       |       |           |       |                             |  |
|                                         |                                                                 |            |       |       |           |       |       |           |       |                             |  |
|                                         |                                                                 |            |       |       |           |       |       |           |       |                             |  |
| Remarks: Sample taken from              | Remarks: Sample taken from Raw Water tap. Supply is from L9312. |            |       |       |           |       |       |           |       |                             |  |

Field-Form Filled Out By: QAQC Check By: K. Holland Date: 9/9/07 A. Blakcburn Date: 9/12/07

| Project ID:           | North Slope Lak | es                  |               | Site Location | n/Lake ID: |       | MSB-MC1 |   |
|-----------------------|-----------------|---------------------|---------------|---------------|------------|-------|---------|---|
| Sample Purpose:       | Lake Water Qua  | lity                | -             | Date:         | 10/25/07   | Time: | 19:32   | _ |
| FIELD MEASUREMENTS    |                 |                     |               |               |            |       |         |   |
| GPS Coord. Northing:  | nr              | Easting:            | nr            | Datum:        | na         |       |         |   |
| Measurements By:      | DAR             | Time:               | 19:32         |               |            |       |         |   |
| Water Depth (ft):     | nr              | Ice Thickness (ft): | nr            |               |            |       |         |   |
| Freeboard (ft):       | nr              | Snow Depth (ft):    | nr            |               |            |       |         |   |
| Elev. (BPMSL +/02):   | 96.15           | Survey By:          | DAR/JED       | Date:         | 6/25/06    | Time: | nr      |   |
| Water Sampling By:    | DAR             | Sample Depths B     | WS (ft): 1 na | Date:         | na         | Time: | na      | _ |
|                       |                 |                     | 2             |               |            |       |         | _ |
| WATER QUALITY METER I | FORMATION       |                     | 3             |               |            |       |         |   |

#### WATER QUALITY METER INFORMATION Calibration Information

| Parameter (s)         | Owner | Meter Make/Model |                    | Seria | al No. | Pre-Sampling<br>QAQC Check |         | Post-Sampling<br>QAQC Check |      |  |
|-----------------------|-------|------------------|--------------------|-------|--------|----------------------------|---------|-----------------------------|------|--|
| Multi                 | GWS   | In-Si            | In-Situ Troll 9000 |       | 330    | 33033                      |         | ASS                         | PASS |  |
|                       |       |                  |                    |       |        |                            |         |                             |      |  |
| Parameters            |       |                  |                    |       | Fi     | eld Meas                   | urement | S                           |      |  |
| Time:                 | 19:32 |                  |                    |       |        |                            |         |                             |      |  |
| Depth BWS (ft):       | 2.5   |                  |                    |       |        |                            |         |                             |      |  |
| Temp (°C):            | -0.25 |                  |                    |       |        |                            |         |                             |      |  |
| pH:                   | 7.36  |                  |                    |       |        |                            |         |                             |      |  |
| Barometeric (mmHg):   | 752.0 |                  |                    |       |        |                            |         |                             |      |  |
| Pressure (kPa):       | 6.760 |                  |                    |       |        |                            |         |                             |      |  |
| Conductivity (ųS/cm): | 207.7 |                  |                    |       |        |                            |         |                             |      |  |
| RDO (ppm): (mg/L)     | 8.18  |                  |                    |       |        |                            |         |                             |      |  |
| Turbidity (NTU):      | 1.1   |                  |                    |       |        |                            |         |                             |      |  |
| ORP                   | 74    |                  |                    |       |        |                            |         |                             |      |  |
|                       |       |                  |                    |       |        |                            |         |                             |      |  |
|                       |       |                  |                    |       |        |                            |         |                             |      |  |

| FIELD TES  | STING OF WATER S | SAMPLES | (if small | probe is u | sed) |  |  |  |  |  |  |
|------------|------------------|---------|-----------|------------|------|--|--|--|--|--|--|
| Probe:     |                  |         |           |            |      |  |  |  |  |  |  |
| Depth (ft) |                  |         |           |            |      |  |  |  |  |  |  |
| Temp (°C)  |                  |         |           |            |      |  |  |  |  |  |  |
| pН         |                  |         |           |            |      |  |  |  |  |  |  |
| Eh         |                  |         |           |            |      |  |  |  |  |  |  |

#### NORTH SLOPE LAB CHEMISTRY ANALYSIS

| Parameter                               | Depth E     | BWS (ft):_ |       | Depth | BWS (ft): |       | Depth | BWS (ft): |       | Method                                    |
|-----------------------------------------|-------------|------------|-------|-------|-----------|-------|-------|-----------|-------|-------------------------------------------|
|                                         | rep 1       | rep 2      | rep 3 | rep 1 | rep 2     | rep 3 | rep 1 | rep 2     | rep 3 |                                           |
| Oxygen (mg/L)                           |             |            |       |       |           |       |       |           |       | Hach spec<br>0.3-15 mg/L                  |
| Alkalinity (mg/L as CaCO <sub>3</sub> ) |             |            |       |       |           |       |       |           |       | Digital titrator<br>10-4000 mg/L as CaCO3 |
| Total ironUF (mg/L)                     |             |            |       |       |           |       |       |           |       | Hach spec<br>0.02-3.00 mg/L               |
| Filtered IronF tot Fe (mg/L)            |             |            |       |       |           |       |       |           |       | Hach spec<br>0.02-3.00 mg/L               |
| Ammonia (mg/L NH <sub>3</sub> -N)****   |             |            |       |       |           |       |       |           |       | 0.01-0.50 mg/L NH3-N                      |
| Ammonia/ Iron dilution                  |             |            |       |       |           |       |       |           |       |                                           |
|                                         |             |            |       |       |           |       |       |           |       |                                           |
|                                         |             |            |       |       |           |       |       |           |       |                                           |
| Remarks: MC1 is Milne Cree              | ek above iu | nction wit | n MSB |       |           |       |       |           |       |                                           |

Remarks: MC1 is Creek above junci

Field-Form Filled Out By: QAQC Check By: A. Blackburn K. Holland Date: 7/10/07 Date: 9/6/07

| Project ID:          | North Slope Lake  | S                   | :             | Site Location | /Lake ID: | H     | KDA2-T1 (1 of 2) |
|----------------------|-------------------|---------------------|---------------|---------------|-----------|-------|------------------|
| Sample Purpose:      | Lake Water Qualit | y                   |               | Date:         | 10/29/06  | Time: | 16:37            |
| FIELD MEASUREMENTS   |                   |                     |               |               |           |       |                  |
|                      |                   |                     |               | Determ        |           |       |                  |
| GPS Coord. Northing: | N70° 20.011'      | Easting:            | W148° 56.365' | Datum:        | NAD 83    |       |                  |
| Measurements By:     | DAR/JD            | Time:               | 16:37         |               |           |       |                  |
| Water Depth (ft):    | 18.9              | Ice Thickness (ft): | 0.8           |               |           |       |                  |
| Freeboard (ft):      | 0.1               | Snow Depth (ft):    | no snow       |               |           |       |                  |
| Elev. (BPMSL):       | 97.32             | Survey By:          | DAR/JED       | Date:         | 10/24/06  | Time: | 14:16            |
| Water Sampling By:   | DAR/JD            | Sample Depths B     | WS (ft): 1 na | Date:         | na        | Time: | na               |
|                      |                   |                     | 2             |               |           | -     |                  |

3

#### WATER QUALITY METER INFORMATION Calibration Information

| Parameter (s)         | Owner |                    |            | Serial No. |       | Pre-Sampling<br>QAQC Check |       | Post-Sampling<br>QAQC Check |       |       |
|-----------------------|-------|--------------------|------------|------------|-------|----------------------------|-------|-----------------------------|-------|-------|
| Multi                 | GWS   | In-Si              | tu Troll 9 | 000        | 330   | 33                         | PA    | SS                          |       | PASS  |
| Parameters            |       | Field Measurements |            |            |       |                            |       |                             |       |       |
| Time:                 | 16:39 | 16:40              | 16:40      | 16:41      | 16:41 | 16:42                      | 16:43 | 16:44                       | 16:45 | 16:46 |
| Depth BWS (ft):       | 2.0   | 3.0                | 4.0        | 5.0        | 7.0   | 9.0                        | 11.0  | 13.0                        | 15.0  | 16.0  |
| Temp (°C):            | 0.12  | 0.12               | 0.14       | 0.14       | 0.16  | 0.16                       | 0.17  | 0.19                        | 0.24  | 0.28  |
| pH:                   |       |                    |            |            |       |                            |       |                             |       |       |
| Barometeric (mmHg):   |       |                    |            |            |       |                            |       |                             |       |       |
| Pressure (kPa):       |       |                    |            |            |       |                            |       |                             |       |       |
| Conductivity (ųS/cm): | 98.1  | 94.5               | 94.2       | 94.0       | 93.6  | 93.4                       | 93.3  | 93.4                        | 93.6  | 93.72 |
| RDO (ppm): (mg/L)     |       |                    |            |            |       |                            |       |                             |       |       |
| Turbidity (NTU):      | -0.1  | -0.2               | -0.1       | -0.1       | -0.1  | -0.1                       | -0.1  | -0.1                        | 0.0   | 0.00  |
| ORP                   |       |                    |            |            |       |                            |       |                             |       |       |
|                       |       |                    |            |            |       |                            |       |                             |       |       |
|                       |       |                    |            |            |       |                            |       |                             |       |       |

| FIELD TES               | FIELD TESTING OF WATER SAMPLES (if small probe is used) |  |  |  |  |  |  |  |  |  |
|-------------------------|---------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Probe:                  |                                                         |  |  |  |  |  |  |  |  |  |
| Depth (ft)              |                                                         |  |  |  |  |  |  |  |  |  |
| Depth (ft)<br>Temp (°C) |                                                         |  |  |  |  |  |  |  |  |  |
| pН                      |                                                         |  |  |  |  |  |  |  |  |  |
| Eh                      |                                                         |  |  |  |  |  |  |  |  |  |

#### NORTH SLOPE LAB CHEMISTRY ANALYSIS

| Parameter                               | Depth E | 3WS (ft):_ |       | Depth | BWS (ft): |       | Depth | BWS (ft): |       | Method                                                |
|-----------------------------------------|---------|------------|-------|-------|-----------|-------|-------|-----------|-------|-------------------------------------------------------|
|                                         | rep 1   | rep 2      | rep 3 | rep 1 | rep 2     | rep 3 | rep 1 | rep 2     | rep 3 |                                                       |
| Oxygen (mg/L)                           |         |            |       |       |           |       |       |           |       | Hach spec<br>0.3-15 mg/L                              |
| Alkalinity (mg/L as CaCO <sub>3</sub> ) |         |            |       |       |           |       |       |           |       | Digital titrator<br>10-4000 mg/L as CaCO <sub>3</sub> |
| Total ironUF (mg/L)                     |         |            |       |       |           |       |       |           |       | Hach spec<br>0.02-3.00 mg/L                           |
| Filtered IronF tot Fe (mg/L)            |         |            |       |       |           |       |       |           |       | Hach spec<br>0.02-3.00 mg/L                           |
| Ammonia (mg/L NH <sub>3</sub> -N)****   |         |            |       |       |           |       |       |           |       | Hach spec<br>0.01-0.50 mg/L NH <sub>3</sub> -N        |
| Ammonia/ Iron dilution                  |         |            |       |       |           |       |       |           |       |                                                       |
|                                         | _       |            |       |       |           |       |       |           |       |                                                       |
|                                         |         | l          |       |       |           |       |       |           |       |                                                       |

Remarks: GWS In-Situ does not have pH and RDO probe

| Field-Form Filled Out By: | A. Blackburn | Date: | 7/11/07 |
|---------------------------|--------------|-------|---------|
| QAQC Check By:            | A.Brown      | Date: | 7/14/07 |

### University of Alaska Fairbanks, Water and Environmental Research Center

Form F-004a: Water Quality Field-Sampling General

| Project ID:            | North Slope Lake | s                   |               | Site Location/Lake I | D:      | KDA2-T1 (2 of 2) |
|------------------------|------------------|---------------------|---------------|----------------------|---------|------------------|
| Sample Purpose:        | Lake Water Quali | ty                  |               | Date: 10/29/0        | 6 Time: | 16:37            |
|                        |                  |                     |               |                      |         |                  |
| FIELD MEASUREMENTS     |                  |                     |               |                      |         |                  |
| GPS Coord. Northing:   | N70° 20.011'     | Easting:            | W148° 56.365' | Datum: NAD 8         | 3       |                  |
| Measurements By:       | DAR/JD           | Time:               | 16:37         |                      |         |                  |
| Water Depth (ft):      | 18.9             | Ice Thickness (ft): | 0.8           |                      |         |                  |
| Freeboard (ft):        | 0.1              | Snow Depth (ft):    | no snow       |                      |         |                  |
| Elev. (BPMSL):         | 97.32            | Survey By:          | DAR/JED       | Date: 10/24/0        | 6 Time: | 14:16            |
| Water Sampling By:     | DAR/JD           | Sample Depths B     | WS (ft): 1 na | Date: na             | Time:   | na               |
|                        |                  |                     | 2             |                      |         |                  |
| WATER QUALITY METER IN | FORMATION        |                     | 3             |                      |         |                  |

#### WATER QUALITY METER INFORMATION Calibration Information

| Parameter (s)         | Owner | wner Meter Make/Model |             |       | Seria | al No.    | Pre-Sampling<br>QAQC Check |    | Post-Sampling<br>QAQC Check |
|-----------------------|-------|-----------------------|-------------|-------|-------|-----------|----------------------------|----|-----------------------------|
| Multi                 | GWS   | In-Si                 | tu Trolle 9 | 0000  | 330   | 033       | PA                         | SS | PASS                        |
| Parameters            |       |                       |             |       | Fi    | ield Meas | urement                    | S  |                             |
| Time:                 | 16:46 | 16:46                 | 16:47       | 16:48 |       |           |                            |    |                             |
| Depth BWS (ft):       | 17.0  | 18.0                  | 19.0        | Bot   |       |           |                            |    |                             |
| Temp (°C):            | 0.36  | 0.49                  | 0.98        | 1.01  |       |           |                            |    |                             |
| pH:                   |       |                       |             |       |       |           |                            |    |                             |
| Barometeric (mmHg):   |       |                       |             |       |       |           |                            |    |                             |
| Pressure (kPa):       |       |                       |             |       |       |           |                            |    |                             |
| Conductivity (ųS/cm): | 94.3  | 95.7                  | 107.5       | 115.0 |       |           |                            |    |                             |
| RDO (ppm): (mg/L)     |       |                       |             |       |       |           |                            |    |                             |
| Turbidity (NTU):      | -0.1  | 0.3                   | 26.0        | -0.6  |       |           |                            |    |                             |
| ORP                   |       |                       |             |       |       |           |                            |    |                             |
|                       |       |                       |             |       |       |           |                            |    |                             |
|                       |       |                       |             |       |       |           |                            |    |                             |

| FIELD TES               | FIELD TESTING OF WATER SAMPLES (if small probe is used) |  |  |  |  |  |  |  |  |  |  |
|-------------------------|---------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| Probe:                  |                                                         |  |  |  |  |  |  |  |  |  |  |
| Depth (ft)              |                                                         |  |  |  |  |  |  |  |  |  |  |
| Depth (ft)<br>Temp (°C) |                                                         |  |  |  |  |  |  |  |  |  |  |
| рН                      |                                                         |  |  |  |  |  |  |  |  |  |  |
| Eh                      |                                                         |  |  |  |  |  |  |  |  |  |  |

#### NORTH SLOPE LAB CHEMISTRY ANALYSIS

| Parameter                               | Depth E | 3WS (ft):_ |       | Depth | BWS (ft): |       | Depth | BWS (ft): |       | Method                                                |
|-----------------------------------------|---------|------------|-------|-------|-----------|-------|-------|-----------|-------|-------------------------------------------------------|
|                                         | rep 1   | rep 2      | rep 3 | rep 1 | rep 2     | rep 3 | rep 1 | rep 2     | rep 3 |                                                       |
| Oxygen (mg/L)                           |         |            |       |       |           |       |       |           |       | Hach spec<br>0.3-15 mg/L                              |
| Alkalinity (mg/L as CaCO <sub>3</sub> ) |         |            |       |       |           |       |       |           |       | Digital titrator<br>10-4000 mg/L as CaCO <sub>3</sub> |
| Total ironUF (mg/L)                     |         |            |       |       |           |       |       |           |       | Hach spec<br>0.02-3.00 mg/L                           |
| Filtered IronF tot Fe (mg/L)            |         |            |       |       |           |       |       |           |       | Hach spec<br>0.02-3.00 mg/L                           |
| Ammonia (mg/L NH <sub>3</sub> -N)****   |         |            |       |       |           |       |       |           |       | Hach spec<br>0.01-0.50 mg/L NH <sub>3</sub> -N        |
| Ammonia/ Iron dilution                  |         |            |       |       |           |       |       |           |       |                                                       |
|                                         | _       |            |       |       |           |       |       |           |       |                                                       |
|                                         |         |            |       |       |           |       |       |           |       |                                                       |

Remarks: GWS In-Situ does not have pH and RDO probe

| Field-Form Filled Out By: | A. Blackburn | Date: | 7/11/07 |
|---------------------------|--------------|-------|---------|
| QAQC Check By:            | A.Brown      | Date: | 7/14/07 |

# APPENDIX B. WATER QUALITY METER CALIBRATION FORMS

The following forms report the pre- and post-calibration checks for the water quality meters used during field sampling.

## *University of Alaska Fairbanks, Water and Environmental Research Center* Form F-004e: Water Quality Meter Calibration Form

| Lake Wate | RMATION                                                                                                                                                                                                             | Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | el: <u>Troll 9000</u><br>33033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GWS       | SSIIDAN                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | SSUDAN                                                                                                                                                                                                              | S/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| QUALITY A |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 33033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | JUNAN                                                                                                                                                                                                               | CE INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Date      | Time                                                                                                                                                                                                                | Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lot No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Exp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Meter Reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pass/Fail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10/19/06  | 0:05                                                                                                                                                                                                                | Oakton pH 4.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 240479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mar-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.04 @ 21.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10/19/06  | 0:10                                                                                                                                                                                                                | In-Situ pH 7.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 531034-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sep-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.02 @ 22.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10/19/06  | 0:14                                                                                                                                                                                                                | In-Situ pH 10.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 531001-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sep-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.91 @ 21.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10/19/06  | 22:57                                                                                                                                                                                                               | In-Situ Quick-Cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9406B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Nov-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 244 @ 21.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10/19/06  | 23:35                                                                                                                                                                                                               | Nanopure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.74 @ 21.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10/19/06  | 23:47                                                                                                                                                                                                               | Hanna HI 7040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dec-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0 @ 19.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10/19/06  | 23:50                                                                                                                                                                                                               | Oakton 447uS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2603492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mar-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 412.1 @ 21.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| + +       |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Exp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pass/Fail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10/23/06  | 19:19                                                                                                                                                                                                               | Oakton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 521202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nov-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.10 @ 15.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10/23/06  |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2512282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dec-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.22 @ 15.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10/23/06  | 19:27                                                                                                                                                                                                               | In-Situ QuickCal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9406B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Nov-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 240 @ 17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10/23/06  | 19:33                                                                                                                                                                                                               | Nanopure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.77 @ 16.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10/23/06  | 19:42                                                                                                                                                                                                               | Hanna HI 746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dec-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10/23/06  | 19:24                                                                                                                                                                                                               | Oakton 447uS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2603492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mar-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 342.3 @ 16.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | Date 10/19/06 10/19/06 10/19/06 10/19/06 10/19/06 10/19/06 10/19/06 10/19/06 10/19/06 10/23/06 10/23/06 10/23/06 10/23/06 10/23/06 10/23/06 10/23/06 10/23/06 10/23/06 10/23/06 10/23/06 10/23/06 10/23/06 10/23/06 | Date         Time           10/19/06         0:05           10/19/06         0:10           10/19/06         0:14           10/19/06         22:57           10/19/06         23:35           10/19/06         23:47           10/19/06         23:50           10/19/06         23:50           10/19/06         23:50           10/19/06         23:50           10/23/06         19:19           10/23/06         19:19           10/23/06         19:27           10/23/06         19:33           10/23/06         19:42           10/23/06         19:24           10/23/06         19:24 | 10/19/06         0:05         Oakton pH 4.01           10/19/06         0:10         In-Situ pH 7.00           10/19/06         0:14         In-Situ pH 10.01           10/19/06         22:57         In-Situ Quick-Cal           10/19/06         23:35         Nanopure           10/19/06         23:47         Hanna HI 7040           10/19/06         23:50         Oakton 447uS           10/19/06         23:50         Oakton 447uS           10/19/06         23:50         Oakton 447uS           10/19/06         23:50         Oakton 447uS           10/23/06         19:19         Oakton           10/23/06         19:19         Oakton           10/23/06         19:27         In-Situ QuickCal           10/23/06         19:27         In-Situ QuickCal           10/23/06         19:24         Hanna HI 746           10/23/06         19:24         Oakton 447uS           10/23/06         19:24         Oakton 447uS | Date         Time         Standard         Lot No.           10/19/06         0:05         Oakton pH 4.01         240479           10/19/06         0:10         In-Situ pH 7.00         531034-3           10/19/06         0:14         In-Situ pH 10.01         531001-1           10/19/06         22:57         In-Situ Quick-Cal         9406B           10/19/06         23:35         Nanopure            10/19/06         23:47         Hanna HI 7040         690           10/19/06         23:50         Oakton 447uS         2603492                 10/19/06         23:50         Oakton 447uS         2603492                 10/19/06         19:19         Oakton         521202           10/23/06         19:19         Oakton         2512282           10/23/06         19:27         In-Situ QuickCal         9406B           10/23/06         19:33         Nanopure            10/23/06         19:42         Hanna HI 746         690 | Date         Time         Standard         Lot No.         Exp.           10/19/06         0:05         Oakton pH 4.01         240479         Mar-06           10/19/06         0:10         In-Situ pH 7.00         531034-3         Sep-06           10/19/06         0:14         In-Situ pH 10.01         531001-1         Sep-06           10/19/06         22:57         In-Situ Quick-Cal         9406B         Nov-06           10/19/06         23:35         Nanopure             10/19/06         23:47         Hanna HI 7040         690         Dec-06           10/19/06         23:50         Oakton 447uS         2603492         Mar-07                  10/19/06         23:50         Oakton 447uS         2603492         Mar-07                  10/19/06         19:19         Oakton         521202         Nov-07           10/23/06         19:19         Oakton         2512282         Dec-07           10/23/06         19:27         In-Situ QuickCal         9406B         Nov-06           10/23/06         < | Date         Time         Standard         Lot No.         Exp.         Meter Reading           10/19/06         0:05         Oakton pH 4.01         240479         Mar-06         4.04 @ 21.00           10/19/06         0:10         In-Situ pH 7.00         531034-3         Sep-06         7.02 @ 22.07           10/19/06         0:14         In-Situ pH 10.01         531001-1         Sep-06         9.91 @ 21.86           10/19/06         22:57         In-Situ Quick-Cal         9406B         Nov-06         244 @ 21.95           10/19/06         23:35         Nanopure          8.74 @ 21.30           10/19/06         23:47         Hanna HI 7040         690         Dec-06         0.0 @ 19.48           10/19/06         23:50         Oakton 447uS         2603492         Mar-07         412.1 @ 21.07           10/19/06         23:50         Oakton 447uS         2603492         Mar-07         412.1 @ 21.07           10/23/06         19:19         Oakton         521202         Nov-07         4.10 @ 15.62           10/23/06         19:19         Oakton         251282         Dec-07         7.22 @ 15.62           10/23/06         19:27         In-Situ QuickCal         9406B         Nov-06 |

Remarks: pH was recalibrated on Post cal check

Field-Form Filled Out By:A. BlackburnDate:8/28/2007QAQC Check By:K. HollandDate:9/5/2007

## University of Alaska Fairbanks, Water and Environmental Research Center Form F-004e: Water Quality Meter Calibration Form

| Project ID:      | North Slop |           |                  | Site Loca      | tion/Lake ID: | SRT           |           |
|------------------|------------|-----------|------------------|----------------|---------------|---------------|-----------|
| Sample Purpose:  | Lake Wate  | r Quality |                  |                |               |               |           |
| WATER QUALITY    |            |           |                  |                |               |               |           |
| Meter Make:      | In-Situ    |           |                  | el: Troll 9000 |               |               |           |
| Owner:           | GWS        |           | S/N              | 1: 33033       |               |               |           |
| CALIBRATION AN   |            |           |                  |                |               |               |           |
| Pre-Sampling QA  | DQUALITTA  | SSURAN    |                  |                |               |               |           |
| Parameter        | Date       | Time      | Standard         | Lot No.        | Exp.          | Meter Reading | Pass/Fail |
| pH 4.01          | 10/23/06   | 19:19     | Oakton           | 2512012        | Nov-07        | 4.04 @ 16.8   | Pass      |
| рН 7.00          | 10/23/06   | 19:19     | Oakton           | 2512282        | Dec-07        | 7.04 @ 16.5   | Pass      |
| pH 10.01         | 10/23/06   | 19:21     | Oakton           | 2512278        | Jun-07        | 10.01 @ 16.12 | Pass      |
| ORP              | 10/23/06   | 19:27     | In-Situ QuickCal | 9406B          | Nov-06        | 240 @ 17.0    | Pass      |
| 100% DO          | 10/23/06   | 19:33     | Nanopure         |                |               | 9.77 @ 16.4   | Pass      |
| Zero DO          | 10/23/06   | 19:42     | Hanna HI 746     | 690            | Dec-06        | 0.10          | Pass      |
| Conductivity     | 10/23/06   | 19:24     | Oakton 447uS     | 2603492        | Mar-07        | 342.3 @ 16.4  | Pass      |
|                  |            |           |                  |                |               |               |           |
|                  |            |           |                  |                |               |               |           |
|                  |            |           |                  |                |               |               |           |
|                  |            |           |                  |                |               |               |           |
| Post-Sampling QA |            |           |                  |                | _             |               |           |
| Parameter        | Date       | Time      | Standard         | Lot No.        | Exp.          | Meter Reading | Pass/Fail |
| pH 4.01          | 10/26/06   |           | Oakton           | 2512012        |               | 4.09 @ 14.41  | Pass      |
| pH 7.00          | 10/26/06   |           | Oakton           | 2512282        |               | 7.12 @ 14.50  | Pass      |
| pH 10.01         | 10/26/06   |           | Oakton           | 2512278        |               | 10.12 @ 14.49 | Pass      |
|                  | 10/26/06   |           | In-Situ QuickCal | 9406B          | Nov-06        | 249 @ 14.50   | Pass      |
| 100% DO          | 10/26/06   |           | Nanopure         |                |               | 10.52 @ 14.07 | Pass      |
| Zero DO          | 10/26/06   |           | Hanna HI 746     | 690            |               | 0.00 @ 13.35  | Pass      |
| Conductivity     | 10/26/06   | 9:48      | Oakton 447uS     | 531284-15      | Apr-05        | 119.5 @ 14.69 | Pass      |
|                  |            |           |                  |                |               |               |           |
|                  |            |           |                  |                |               |               |           |
|                  |            |           |                  |                |               |               |           |
| Remarks:         |            |           |                  |                |               |               |           |

Field-Form Filled Out By:A. BlackburnDate:8/28/2007QAQC Check By:A. BrownDate:8/31/2007

# APPENDIX C. ELEVATION SURVEY FORMS

The following form reports the elevation survey information obtained during field sampling.

| Project ID:          |                       | North Slope       | e Lakes                 |                     | Site Locati      | ion/Lake ID:              | Ku                | paruk Dead Arm                        |  |
|----------------------|-----------------------|-------------------|-------------------------|---------------------|------------------|---------------------------|-------------------|---------------------------------------|--|
| Survey Purp          | ose:                  |                   | l Elevations            |                     | Date:            | 10/24/2006                |                   | 14:45                                 |  |
| Location:            |                       |                   | Kuparuk                 | Deadarm Re          | servoirs Cel     | ls 1, 2, 3, 4, 5          | 5                 |                                       |  |
| Survey<br>objective: |                       | Lake water e      | elevation survey        |                     |                  | Weat<br>Observa           |                   |                                       |  |
| Instrument<br>Type:  | Leica N               | A720              | Instrument ID:          | 5482372 (G          | WS owned)        |                           |                   |                                       |  |
| Rod Type:            | Craine fibe           | -                 | Rod ID:                 | GWS o               | owned            | 19 Degrees<br>snow accum  |                   | ercast, flat light 1.5" of ast 24 hrs |  |
|                      |                       | Bench Mar         | k Information:          |                     |                  | Survey Tea                | m Names           |                                       |  |
| Name                 | Agency<br>Responsible | Elevation<br>(ft) | Latitude<br>(dd-mm.mmm) | Long<br>(ddd-mm     |                  | Dan Reichai<br>Jeff Derry | dt                |                                       |  |
| TBM                  | nr                    | 100<br>Temp.      | N70 20.045<br>NAD27     | W148 5<br>NAI       |                  |                           |                   |                                       |  |
| Station              | BS<br>(ft)            | HI<br>(ft)        | FS<br>(ft)              | Elevation<br>(fasl) | Distance<br>(ft) | Horizontal<br>Angle       | Vertical<br>Angle | Remarks                               |  |
| KDA2-SHB             | 7.80                  | 96.88             |                         | 89.08               |                  |                           |                   | Close within .00                      |  |
| Shooting fro         | m ^5, KDA3 F\         | VS=89.08          | L                       | 1                   |                  | 1                         |                   |                                       |  |
| KDA3-SH>             |                       | 89.21             | 0.13                    | 89.08               |                  |                           |                   | FWS                                   |  |
| KDA3-SHC             |                       | 95.99             | 6.78                    | 89.21               |                  |                           |                   | TOI                                   |  |
| KDA4-SHA             |                       | 95.99             |                         | 85.83               |                  |                           |                   | TOI FB=0.00                           |  |
| Use KDA4-S           | SHA as TP, mo         | ve to ^6          |                         |                     |                  |                           |                   |                                       |  |
| KDA4-SHA             | 9.35                  | 95.18             |                         | 85.83               |                  |                           |                   |                                       |  |
| TP1                  |                       | 95.18             | 4.06                    | 91.12               |                  |                           |                   | Close within 0.02                     |  |
| Use TP1 as           | TP, move to ^7        | 7                 |                         |                     |                  |                           |                   |                                       |  |
| TP1                  | 6.84                  | 97.96             |                         | 91.12               |                  |                           |                   |                                       |  |
| KDA3-SHC             |                       | 97.96             | 8.73                    | 89.23               |                  |                           |                   | Close to within 0.02                  |  |
| Shooting fro         | m ^8, KDA4 F\         | VS=85.83          | I                       | I                   |                  | I                         |                   |                                       |  |
| KDA5-<br>SHA>        | 6.68                  | 92.51             |                         | 85.83               |                  |                           |                   | KDA 5 Water Level                     |  |
| KDA4-<br>SHB>        |                       | 92.51             | 6.68                    | 85.83               |                  |                           |                   |                                       |  |
|                      | SHB> as TP, m         | ove to ^9         | <u> </u>                | !                   | <u> </u>         | <u> </u>                  |                   |                                       |  |
| KDA4-<br>SHB>        | 7.14                  | 92.97             |                         | 85.83               |                  |                           |                   | KDA 4 Water Level                     |  |
| KDA5-<br>SHA>        | <u> </u>              | 92.97             | 7.15                    | 85.82               | <u> </u>         |                           |                   | Close to within 0.01                  |  |
|                      |                       |                   |                         |                     |                  |                           |                   |                                       |  |

### University of Alaska Fairbanks, Water and Environmental Research Center

| Project ID:         |                       | North Slope       |                         |                     |                  | ation/Lake ID:              | Kuparul                                   | k Dead Arm                 |
|---------------------|-----------------------|-------------------|-------------------------|---------------------|------------------|-----------------------------|-------------------------------------------|----------------------------|
| Survey Purpose:     | -                     | Water-Level       | Elevations              |                     | Date:            | 10/24/2006                  | Time:                                     | 14:45                      |
| Location:           |                       |                   | Kuparu                  | k Deadarm Re        | eservoirs Ce     | lls 1, 2, 3, 4, 5           |                                           |                            |
| Survey objective:   |                       | Lake water        | elevation survey        |                     |                  | Weather (                   | Observations:                             |                            |
| Instrument<br>Type: | Leica N               | NA720             | Instrument ID:          | 5482372 (G          | WS owned)        |                             |                                           |                            |
| Rod Type:           | Craine fibe           | erglass 20'       | Rod ID:                 | GWS                 | owned            |                             | , calm, overcast,<br>Ilation in last 24 h |                            |
|                     | •                     | Bench Mark        | Information:            | •                   |                  |                             | eam Names                                 |                            |
| Name                | Agency<br>Responsible | Elevation<br>(ft) | Latitude<br>(dd-mm.mmm) | Long<br>(ddd-mn     |                  | Dan Reichardt<br>Jeff Derry |                                           |                            |
| TBM                 | nr                    | 100<br>Temp.      | N70 20.045<br>NAD27     | W148 5<br>NAE       |                  |                             |                                           |                            |
| Station             | BS<br>(ft)            | HI<br>(ft)        | FS<br>(ft)              | Elevation<br>(fasl) | Distance<br>(ft) | Horizontal<br>Angle         | Vertical Angle                            | Remarks                    |
| TBM                 | 0.00                  | 100.00            |                         | 100.00              |                  |                             |                                           | Survey begins at<br>TBM ^1 |
| KDA3-SHA            |                       | 100.00            | 10.72                   | 89.29               |                  |                             |                                           | TOI                        |
| KDA3-SHA>           |                       | 89.29             | 0.21                    | 89.08               |                  |                             |                                           | FWS                        |
| KDA3-SHB            |                       | 100.00            | 10.90                   | 89.10               |                  |                             |                                           | ΤΟΙ                        |
| KDA3-SHB>           |                       | 89.10             | 0.02                    | 89.08               |                  |                             |                                           | FWS<br>KDA 3 Water         |
| KDA2-SHA            |                       | 100.00            | 10.90                   | 89.11               |                  |                             |                                           | ΤΟΙ                        |
| KDA2-SHA>           |                       | 89.11             | 0.03                    | 89.08               |                  |                             |                                           | FWS<br>KDA 2 Water         |
| Use KDA2-SHA a      | as TP, move to        | ^2.               | 1                       | I                   |                  |                             |                                           |                            |
| KDA2-SHA            | 11.60                 | 100.71            |                         | 89.11               |                  |                             |                                           |                            |
| KDA3-SHB            |                       | 100.71            | 11.62                   | 89.09               |                  |                             |                                           | Close within .01           |
| TBM                 |                       | 100.71            | 0.71                    | 100.00              |                  |                             |                                           | Close within .01           |
| Shooting from ^3    | , KDA2 FWS=8          | 39.08'            | 1                       | <u> </u>            | 1                | I                           |                                           |                            |
| KDA2-SHB>           | 0.00                  | 89.08             |                         | 89.08               |                  |                             |                                           | FWS                        |
| KDA2-SHB            |                       | 97.32             | 8.24                    | 89.08               |                  |                             |                                           | ΤΟΙ                        |
| KDA1-SHA            |                       | 97.32             | 7.96                    | 89.36               |                  |                             |                                           | тоі                        |

Abbreviations: backsight, BS; degrees, dd; feet, ft; feet above mean sea level, fasml; foresight, FS; height of instrument, HI; minutes, mm;

89.36

96.88

0.03

7.52

KDA1-SHA>

KDA1-SHA

Use KDA1-SHA as TP, move to ^4

89.33

89.36

seconds, ss; BP Mean Sea Level, BPMSL

FWS

KDA 1 Water

Level

 Project ID:
 North Slope Lakes
 Site Location/Lake ID:
 Mine Site B

 Survey Purpose:
 Water-Level Elevations
 Date:
 10/25/2006
 Time:
 nr

| Location:            |                       | Mir               | ne Site B, NE     | corner of Nor       | th Cell, temp    | orary datum         |                   |                     |
|----------------------|-----------------------|-------------------|-------------------|---------------------|------------------|---------------------|-------------------|---------------------|
| Survey<br>objective: | L                     | ake water e       | levation surv     | еу                  |                  | Weatl<br>Observa    |                   |                     |
| Instrument<br>Type:  | Leica N               | IA720             | Instrument<br>ID: | 5482372 (G\         | VS owned)        |                     | 1                 |                     |
| Rod Type:            | Craine fibe           | rglass 20'        | Rod ID:           | GWS o               | wned             |                     |                   |                     |
|                      | E                     | Bench Mark        | Information:      |                     |                  | Survey Team Names   |                   |                     |
| Name                 | Agency<br>Responsible | Elevation<br>(ft) | Latitude<br>(dd-  | Longit<br>(ddd-mm   |                  | D. Reichardt, J. D  |                   | Derry               |
| TBM                  | nr                    | 100<br>Temp.      | na                | na                  | 1                |                     |                   |                     |
| Station              | BS<br>(ft)            | HI<br>(ft)        | FS<br>(ft)        | Elevation<br>(fasl) | Distance<br>(ft) | Horizontal<br>Angle | Vertical<br>Angle | Remarks             |
| TBM                  | 1.80                  | 101.80            | (11)              | 100.00              |                  | Angle               | Angle             | Shooting<br>from ^1 |
| MSBN-A>              |                       | 101.80            | 5.64              | 96.16               |                  |                     |                   |                     |
| MSBS-A>              |                       | 101.80            | 5.64              | 96.16               |                  |                     |                   |                     |
| Turn to MSBS         | S-A>, shooting        | from ^2.          |                   |                     |                  |                     | 1                 | 1                   |
| MSBS-A>              | 5.67                  | 101.83            |                   | 96.16               |                  |                     |                   |                     |
| MC1>                 |                       | 101.83            | 5.68              | 96.15               |                  |                     |                   |                     |
| MC2>                 |                       | 101.83            | 5.67              | 96.16               |                  |                     |                   |                     |
| MC3>                 |                       | 101.83            | 5.68              | 96.15               |                  |                     |                   |                     |
| MC40>                |                       | 101.83            | 5.69              | 96.14               |                  |                     |                   |                     |
| Turn to MC40         | , shooting fron       | n ^3              |                   |                     | •                |                     |                   |                     |
| MC40>                | 5.46                  | 101.60            |                   | 96.14               |                  |                     |                   | TOI                 |
| WC1                  |                       | 101.60            | 4.96              | 96.64               |                  |                     |                   | TOI                 |
| WC2                  |                       | 101.60            | 5.22              | 96.38               |                  |                     |                   | TOI                 |

 Project ID:
 North Slope Lakes
 Site Location/Lake ID:
 Mine Site B

 Survey Purpose:
 Water-Level Elevations
 Date:
 10/25/2006
 Time:
 nr

| Location:            | Mine Site B, NE corner of North Cell, temporary datum |                             |                         |                     |                  |                     |                   |         |  |
|----------------------|-------------------------------------------------------|-----------------------------|-------------------------|---------------------|------------------|---------------------|-------------------|---------|--|
| Survey<br>objective: |                                                       | Lake water elevation survey |                         |                     |                  |                     |                   |         |  |
| Instrument<br>Type:  | Leica N                                               | IA720                       | Instrument ID:          | 5482372 (G          | WS owned)        | Observations:       |                   |         |  |
| Rod Type:            | Craine fibe                                           | rglass 20'                  | Rod ID:                 | GWS                 | owned            |                     |                   |         |  |
|                      | •                                                     | Bench Ma                    | rk Information:         |                     |                  | Survey Tea          | m Names           |         |  |
| Name                 | Agency<br>Responsible                                 | Elevation<br>(ft)           | Latitude<br>(dd-mm.mmm) | -                   | itude<br>n.mmm)  |                     | ichardt, J.       | Derry   |  |
| TBM                  | nr                                                    | 100<br>Temp.                | na                      | n                   | а                |                     |                   |         |  |
| Station              | BS<br>(ft)                                            | HI<br>(ft)                  | FS<br>(ft)              | Elevation<br>(fasl) | Distance<br>(ft) | Horizontal<br>Angle | Vertical<br>Angle | Remarks |  |
| WC3                  |                                                       | 101.60                      | 5.34                    | 96.26               |                  |                     |                   | TOI     |  |
| WC4                  |                                                       | 101.60                      | 5.43                    | 96.17               |                  |                     |                   | TOI     |  |
| WC5                  |                                                       | 101.60                      | 5.42                    | 96.18               |                  |                     |                   | TOI     |  |
| WC6                  |                                                       | 101.60                      | 5.41                    | 96.19               |                  |                     |                   | TOI     |  |
| WC7                  |                                                       | 101.60                      | 5.41                    | 96.19               |                  |                     |                   | TOI     |  |
| WC8                  |                                                       | 101.60                      | 5.41                    | 96.19               |                  |                     |                   | TOI     |  |
| WC9                  |                                                       | 101.60                      | 5.41                    | 96.19               |                  |                     |                   | TOI     |  |
| WC10                 |                                                       | 101.60                      | 5.42                    | 96.18               |                  |                     |                   | TOI     |  |
| WC11                 |                                                       | 101.60                      | 5.43                    | 96.17               |                  |                     |                   | TOI     |  |
| WC12                 |                                                       | 101.60                      | 5.4                     | 96.20               |                  |                     |                   | TOI     |  |
| WC13                 |                                                       | 101.60                      | 5.28                    | 96.32               |                  |                     |                   | TOI     |  |
| WC14                 |                                                       | 101.60                      | 4.90                    | 96.70               |                  |                     |                   | TOI     |  |
| MSBS-A>              |                                                       | 101.60                      | 5.44                    | 96.16               |                  |                     |                   | TOI     |  |

 Project ID:
 North Slope Lakes
 Site Location/Lake ID:
 Mine Site B

 Survey Purpose:
 Water-Level Elevations
 Date:
 10/25/2006
 Time:
 nr

| Location:            | Mine Site B, NE corner of North Cell, temporary datum |                             |                         |                     |                  |                     |                   |         |
|----------------------|-------------------------------------------------------|-----------------------------|-------------------------|---------------------|------------------|---------------------|-------------------|---------|
| Survey<br>objective: |                                                       | Lake water elevation survey |                         |                     |                  |                     |                   |         |
| Instrument<br>Type:  | Leica N                                               | IA720                       | Instrument ID:          | 5482372 (G          | WS owned)        | Observations:       |                   |         |
| Rod Type:            | Craine fibe                                           | rglass 20'                  | Rod ID:                 | GWS                 | owned            |                     |                   |         |
|                      | •                                                     | Bench Ma                    | rk Information:         |                     |                  | Survey Tea          | m Names           |         |
| Name                 | Agency<br>Responsible                                 | Elevation<br>(ft)           | Latitude<br>(dd-mm.mmm) | Long<br>(ddd-mn     |                  | D. Re               | ichardt, J.       | Derry   |
| TBM                  | nr                                                    | 100<br>Temp.                | na                      | n                   | а                |                     |                   |         |
| Station              | BS<br>(ft)                                            | HI<br>(ft)                  | FS<br>(ft)              | Elevation<br>(fasl) | Distance<br>(ft) | Horizontal<br>Angle | Vertical<br>Angle | Remarks |
| WC-MD                | 5.41                                                  | 101.60                      |                         | 96.19               |                  |                     |                   |         |
| MSBN-A>              |                                                       | 101.60                      | 5.44                    | 96.16               |                  |                     |                   |         |
| TBM                  |                                                       | 101.60                      | 1.61                    | 99.99               |                  |                     |                   |         |
| Move instur          | ment to ^3, us                                        | e TBM A                     | STP                     |                     | <u> </u>         |                     |                   |         |
| TBM                  |                                                       | 103.09                      |                         | 99.99               |                  |                     |                   |         |
| MC50>                | 6.95                                                  | 103.09                      |                         | 96.14               |                  |                     |                   |         |
|                      |                                                       |                             |                         |                     |                  |                     |                   |         |
|                      |                                                       |                             |                         |                     |                  |                     |                   |         |
|                      |                                                       |                             |                         |                     |                  |                     |                   |         |
|                      |                                                       |                             |                         |                     |                  |                     |                   |         |
|                      |                                                       |                             |                         |                     |                  |                     |                   |         |
|                      |                                                       |                             |                         |                     |                  |                     |                   |         |
|                      |                                                       |                             |                         |                     |                  |                     |                   |         |

|                      | ect ID:               |                   | Form F-011<br>Iorth Slope Lake | es                  | Site Locat       | ion/Lake ID:        |                   | L9312_PHT (pg 1 of 2                       |
|----------------------|-----------------------|-------------------|--------------------------------|---------------------|------------------|---------------------|-------------------|--------------------------------------------|
| Survey               | Purpose:              | Wa                | ter-Level Elevat               | ions                | Date:            | 10/27/07            | Time:             | 14:30                                      |
| Location:            |                       |                   |                                | L                   | 9312             |                     |                   |                                            |
| Survey<br>objective: |                       | Lake water        | elevation survey               |                     |                  | Weat<br>Observa     |                   |                                            |
| Instrument<br>Type:  | Leica N               | A720              | Instrument ID:                 | 5482372 (G          | WS owned)        |                     | oh North w        | vind 20% cloud cover                       |
| Rod Type:            | Craine fiber          | rglass 20'        | Rod ID:                        | GWS                 | owned            |                     |                   |                                            |
|                      |                       | Bench Mar         | k Information:                 |                     |                  | Survey Tea          |                   |                                            |
| Name                 | Agency<br>Responsible | Elevation<br>(ft) | Latitude<br>(dd-mm.mmm)        | Long<br>(ddd-mn     | n.mmm)           |                     | D. Reicha         | rdt, J. Derry                              |
| L9312 "P"            | CP                    | 11.72<br>BPMSL    | 70-20.032<br>NAD83             | 150-5<br>NAI        |                  |                     |                   |                                            |
| Station              | BS<br>(ft)            | HI<br>(ft)        | FS<br>(ft)                     | Elevation<br>(fasl) | Distance<br>(ft) | Horizontal<br>Angle | Vertical<br>Angle | Remarks                                    |
|                      |                       |                   | sh                             | nooting from        | inst. 1          |                     |                   |                                            |
| TBM 39 "P"           | 2.80                  | 14.52             |                                | 11.72               |                  |                     |                   | SW corner of HSM in<br>lake near pumphouse |
| TBM 39 "O"           |                       | 14.52             | 3.13                           | 11.39               |                  |                     |                   | Reads 0.07' low                            |
| PHT 2                |                       | 14.52             | 6.63                           | 7.89                |                  |                     |                   | TOI                                        |
| PHT 3                |                       | 14.52             | 6.35                           | 8.17                |                  |                     |                   | puddle has dirt botor<br>(frozen)          |
| PHT 4                |                       | 14.52             | 6.60                           | 7.92                |                  |                     |                   | TOI                                        |
| PHT 5                |                       | 14.52             | 6.51                           | 8.01                |                  |                     |                   | TOI                                        |
| PHT 6                |                       | 14.52             | 6.21                           | 8.31                |                  |                     |                   | puddle has dirt boton<br>(frozen)          |
| PHT 7                |                       | 14.52             | 6.28                           | 8.24                |                  |                     |                   | TOI                                        |
| PHT 8                |                       | 14.52             | 5.69                           | 8.83                |                  |                     |                   | TOI                                        |
| PHT 9                |                       | 14.52             | 5.75                           | 8.77                |                  |                     |                   | TOI                                        |
| PHT 10               |                       | 14.52             | 5.74                           | 8.78                |                  |                     |                   | TOI                                        |
| PHT 11               |                       | 14.52             | 5.64                           | 8.87                |                  |                     |                   | TOI                                        |
| PHT 12               |                       | 14.52             | 6.46                           | 8.06                |                  |                     |                   | TOI                                        |
| TP1                  |                       | 14.52             | 5.94                           | 8.58                |                  |                     |                   |                                            |
|                      |                       |                   | move instr                     | rument to ins       | t. 2 TP1 as      | TP                  |                   |                                            |
| TP1                  | 4.54                  | 13.12             |                                | 8.58                |                  |                     |                   |                                            |
| L9312 OC             |                       | 13.12             | 5.39                           | 7.73                |                  |                     |                   | outlet control on Nort<br>Shore. TOI       |

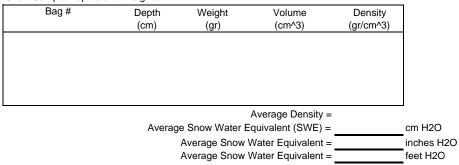
# University of Alaska Fairbanks, Water and Environmental Research Center Form F-011: Elevation Survey Form Project ID: North Slope Lakes Site Location/Lake ID: L9312 PHT (pg 2 of 2)

| Project ID:<br>Survey Purpose: |                       | N                      | orth Slope Lak          | Site Location/Lake ID: |           |            | L9312_PHT (pg 2 of 2 |                      |
|--------------------------------|-----------------------|------------------------|-------------------------|------------------------|-----------|------------|----------------------|----------------------|
|                                |                       | Water-Level Elevations |                         |                        | Date:     | 10/27/07   | Time:                | 14:30                |
| Location:                      |                       |                        |                         | L                      | 9312      |            |                      |                      |
| Survey                         |                       | Lake water             | elevation survey        |                        |           | Weat       | her                  |                      |
| objective:                     |                       |                        | -                       |                        |           | Observa    | ations:              |                      |
| Instrument<br>Type:            | Leica N               | IA720                  | Instrument ID:          | 5482372 (G             | WS owned) |            | oh North w           | vind 20% cloud cover |
| Rod Type:                      | Craine fibe           | rglass 20'             | Rod ID:                 | GWS o                  | owned     |            |                      |                      |
|                                |                       | Bench Mar              | k Information:          |                        |           | Survey Tea | m Names              |                      |
| Name                           | Agency<br>Responsible | Elevation<br>(ft)      | Latitude<br>(dd-mm.mmm) | Long<br>(ddd-mn        |           |            |                      | rdt, J. Derry        |
| L9312 "P"                      | СР                    | 11.72<br>BPMSL         | 70-20.032<br>NAD83      | 150-5<br>NAI           | 7.138     |            |                      |                      |
| Station                        | BS                    | HI                     | FS                      | Elevation              | Distance  | Horizontal | Vertical             | Remarks              |
|                                | (ft)                  | (ft)                   | (ft)                    | (fasl)                 | (ft)      | Angle      | Angle                |                      |
| DSC 1                          | (-7                   | 13.12                  | 5.49                    | 7.63                   |           |            | <b>j</b>             |                      |
| DSC 2                          |                       | 13.12                  | 5.65                    | 7.47                   |           |            |                      |                      |
| _9312SH_v                      |                       | 13.12                  | 5.42                    | 7.70                   |           |            |                      | L9312 Water Level    |
| SH-PH-                         |                       | 13.12                  | 5.38                    | 7.74                   |           |            |                      |                      |
| mid_ice                        |                       |                        |                         |                        |           |            |                      |                      |
| SH-PH-                         |                       | 13.12                  | 5.42                    | 7.70                   |           |            |                      |                      |
| mid_v<br>TBM "O"               |                       | 13.12                  | 1.65                    | 11.47                  |           |            |                      |                      |
| TBM"P"                         |                       | 13.12                  | 1.40                    | 11.72                  |           |            |                      |                      |
|                                |                       | 13.12                  | 1.40                    | 11.72                  |           |            |                      |                      |
|                                |                       |                        |                         |                        |           |            |                      |                      |
|                                |                       |                        |                         |                        |           |            |                      |                      |
|                                |                       |                        |                         |                        |           |            |                      |                      |
|                                |                       |                        |                         |                        |           |            |                      |                      |
|                                |                       |                        |                         |                        |           |            |                      |                      |
|                                |                       |                        |                         |                        |           |            |                      |                      |
|                                |                       |                        |                         |                        |           |            |                      |                      |
|                                |                       |                        |                         |                        |           |            |                      |                      |
|                                |                       |                        |                         |                        |           |            |                      |                      |
|                                |                       |                        |                         |                        |           |            |                      |                      |
|                                |                       |                        |                         |                        |           |            |                      |                      |
|                                |                       |                        |                         |                        |           |            |                      |                      |

# APPENDIX D. SNOW SURVEY FORMS

The following form reports the snow survey information obtained during field sampling.

#### University of Alaska Fairbanks, Water and Environmental Research Center Form F-012: Snow Depth and Water Content Survey Form


| Project ID:<br>Survey Purpose: |                    | h Slope Lakes Project<br>w Depth and Water Conten              | t                          | Site Location/Lake ID<br>Date: 10/26/2006 |                                            |  |  |
|--------------------------------|--------------------|----------------------------------------------------------------|----------------------------|-------------------------------------------|--------------------------------------------|--|--|
| Location<br>Description:       | From KDA2-CT, sno  | w course goes North 25m, w                                     | vest 25m. Depth in cr      | m. North.                                 |                                            |  |  |
| Survey objective:              | Snow depths and sn | Snow depths and snow-water content for lake recharge estimates |                            |                                           | Weather 15F, 7mph N. wind<br>Observations: |  |  |
| Latitude:                      | nr                 | Longitude:                                                     | nr                         | Datum:                                    | na                                         |  |  |
| Elevation:                     |                    | Elevation Datum:                                               | nr                         | Reference<br>Markers:                     | Site staked with lathe                     |  |  |
| Drainage Basin:                | Kuparuk            | Slope Direction:                                               | flat                       | Vegetation<br>Type:                       | Snow Survey located on ice                 |  |  |
| Slope Angle:                   | Flat               | Access Notes:                                                  | none                       | Other:                                    | 1 meter increments                         |  |  |
| Snow Depth Probe Type:         |                    | T-handle snow dep                                              | T-handle snow depth probe, |                                           | Team Names                                 |  |  |
| 51                             |                    | ondak, 6.74 cm diameter cutt<br>= 35.7 cm^2                    | *                          |                                           | J. Derry                                   |  |  |

#### Snow Course Depths, in cm.

|    | 1   | 2   | 3   | 4   | 5   |
|----|-----|-----|-----|-----|-----|
| 1  | 5.0 | 3.5 | 5.0 | 6.0 | 4.5 |
| 2  | 5.5 | 6.5 | 5.0 | 5.0 | 5.0 |
| 3  | 4.5 | 6.0 | 4.5 | 4.5 | 4.5 |
| 4  | 4.5 | 5.5 | 5.0 | 4.5 | 4.5 |
| 5  | 5.0 | 5.5 | 4.5 | 5.0 | 5.0 |
| 6  | 4.5 | 4.0 | 5.0 | 4.5 | 5.0 |
| 7  | 5.0 | 5.0 | 5.0 | 4.5 | 6.0 |
| 8  | 5.0 | 7.5 | 5.0 | 4.5 | 8.0 |
| 9  | 4.0 | 6.0 | 5.5 | 5.0 | 8.0 |
| 10 | 4.0 | 6.0 | 6.0 | 5.0 | 8.0 |

#### (cm) Average snow depth = 5.2 Maximum snow depth = 8.0 Minimum snow depth = 3.5 Standard variation = 1.0

#### Snow Sample Depths and Weights



SWE = avg. snow depth\*(density snow/density water)

## University of Alaska Fairbanks, Water and Environmental Research Center Form F-012: Snow Depth and Water Content Survey Form

| Project ID: North                           |                                                                | North Slope                | orth Slope Lakes Project        |                      |                            | ke ID: L9       | L9312         |  |
|---------------------------------------------|----------------------------------------------------------------|----------------------------|---------------------------------|----------------------|----------------------------|-----------------|---------------|--|
| Survey Purpo                                | ose:                                                           | Snow Depth                 | and Water C                     | ontent               | Date: 10/27/2007           |                 | 15:00         |  |
| Location<br>Description:                    | Point 1 to 25                                                  | 5 Proceeds Nor             | th Point 25 to                  | 50 Proceeds West 1 N | Aeter Incrememts           |                 |               |  |
| Survey<br>objective:                        | Snow depths and snow-water content for lake recharge estimates |                            |                                 | es Weather           | s Weather Observations: nr |                 |               |  |
| Latitude:                                   | N 70°19.944                                                    | 14'                        | Longitude:                      | W 150° 57.047'       | Datum:                     | NAD27 Alask     | a             |  |
| Elevation:                                  |                                                                |                            | Elevation<br>Datum:             | BPMSL                | Referenc<br>Markers:       |                 | vith GPS      |  |
| Drainage<br>Basin:                          | L9312                                                          |                            | Slope<br>Direction:             | flat                 | Vegetatio<br>Type:         | on snow depth o | n ice surface |  |
| Slope Angle:                                | Flat                                                           |                            | Access<br>Notes:                |                      | Other:                     | 1 meter incre   | ments         |  |
| Snow Depth Probe Type:                      |                                                                | T-handle snow depth probe, |                                 | Snow-Su              | Snow-Survey Team Names     |                 |               |  |
| Snow Tube Type: Adirondak, 6<br>area = 35.7 |                                                                |                            | .74 cm diameter cutter,<br>cm^2 |                      | D. Reich                   | ardt, J. Derry  |               |  |

|    | Snow Course Depths, in cm. |      |      |      |   |  |  |  |
|----|----------------------------|------|------|------|---|--|--|--|
|    | 1                          | 2    | 3    | 4    | 5 |  |  |  |
| 1  | 5.0                        | 13.5 | 1.0  | 7.0  |   |  |  |  |
| 2  | 4.5                        | 7.0  | 8.5  | 5.0  |   |  |  |  |
| 3  | 4.0                        | 5.0  | 9.0  | 4.0  |   |  |  |  |
| 4  | 6.0                        | 5.5  | 7.0  | 10.0 |   |  |  |  |
| 5  | 5.0                        | 6.0  | 8.5  | 11.0 |   |  |  |  |
| 6  | 3.0                        | 5.5  | 10.0 | 11.5 |   |  |  |  |
| 7  | 5.0                        | 6.0  | 13.0 | 12.5 |   |  |  |  |
| 8  | 9.0                        | 8.0  | 18.0 | 15.0 |   |  |  |  |
| 9  | 3.0                        | 0.0  | 8.0  | 13.0 |   |  |  |  |
| 10 | 1.0                        | 3.0  | 8.0  | 11.0 |   |  |  |  |

(cm) Average snow depth = 7.4 Maximum snow depth = 18.0 Minimum snow depth = 0.0 Standard variation = 4.0

#### Snow Sample Depths and Weights

|       |                                  | - 3            |                  |                      | -      |  |  |
|-------|----------------------------------|----------------|------------------|----------------------|--------|--|--|
| Bag # | Depth<br>(cm)                    | Weight<br>(gr) | Volume<br>(cm^3) | Density<br>(gr/cm^3) |        |  |  |
|       |                                  |                |                  |                      |        |  |  |
|       |                                  |                |                  |                      |        |  |  |
|       |                                  |                |                  |                      |        |  |  |
|       | Average Density =                |                |                  |                      |        |  |  |
|       | Average Sno                      | w Water Equiv  | alent (SWE) =    |                      | cm H2O |  |  |
|       | Average Snow Water Equivalent =  |                |                  |                      |        |  |  |
|       | Average Snow Water Equivalent =f |                |                  |                      |        |  |  |

SWE = avg. snow depth\*(density snow/density water)