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\hstract

Three numerical models (designated the Goodrich, Guymon /Hromadka. and Seregina models) used for caiculations of
he ground thermal regime which are based on different numerical methods and employ different treatments of freezing and
hawing were compared with each other. with anaiytical solutions, and with measured temperawure data. Comparisons of the
nodels with the Neumanrn solution show differences generally less than 0.2°C between calculated temperatures using a wide
ange of time and depth steps. The Goodrich and Guymon /Hromadka models have been shown to pradict temperarure field
tynamics reliably in the active layer and permafrost using small time and depth steps. However, comparisons of the models
vith each other using large time and depth steps and fictd data for the surface boundary condition showed significant
fifferences between them {RMS deviations exceeding 1°C) and, in addition. the development of a non-physical feature (thaw
ulb after freeze-up). Therefore. with large time and depth seps, the modeis cannot reproduce the emperature field
lynamics in the active layer and permafrost. Consequently, agreement with the Neumann solution is necessary but not
urficient to qualify the medels for calculations of real temperature fields. The Goodrich model requires a time step not
onger than | k and depth step in the upper 1 m not larger than 0.02 m to reproduce the temperature regime with reasonable
ccuracy. However, the choice of opimum time and depth steps appears to be specific to the application. Using the
suymon,/Hromadka model. similar accuracy can be obtained with 2 | h time step and 0.1 m space step within the upper | m
iepth or a | day time step and 0.01 m space step. However, the use of larger steps does not necessanily decrease the
alculational rime compared to the Goodrich model. For the case with unfrozen water present in the frozen soil, the resulis of

-alculations using the numerical models were compared with an analytical solution and were found to agree within 0.02°C. -
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. Introduction consequences of global changes. Most of the current
global circulation models {GCMs) are unable to reli-
ably predict regional ciimatic changes resulting from
a global-scale change (Hewitson, 1994), partly be-
cause of insufficient consideration of {and-atmo-

Numerical modeling is one of the few methods
vhich can provide information on the direction and
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-account more complete information about surface
conditions (snow cover characteristics, ground tem-
perature, active layer thicknesses and characteristics,
surface and ground hydrology) (Lynch et al., 1995).

Numerical modeling of the active layer and near-
surface permafrost temperature field dynamics is also
an important component of engineering design in
northern regions particularly when properties change
dramatically due to thawing of the permafrost
(Osterkamp 1982; Esch and Osterkamp, 1990: Os-
terkamp et al., 1997). For this reason, the accuracy
of calculations of the active layer thicknesses and
characteristics and the temperature regime of the
active layer and near-surface permafrost become im-
portant,

A comprehensive review of numerical methods
for ground thermat regime caiculations was provided
by Goodrich (1982b) and more recently by Alexi-
ades and Sclomen (1993}

In this paper. three models wiil be considered: a
finite difference model (Goodrich. 1976. 1978a.b),
designated the Goodrich model: a finite element
model {Osterkamp and Romanovsky. 1996), which is
a modified version of the Guymon and Hromadka
(1977) and Guymon et al. (1984) model, designated
the Guymon /Hromadka model; and a finite differ-
ence model (Seregina. 1989; Romanovsky et al.,
1991b; Garagulya et al, 1995), designated the
Seregina model.

Application of numerical methods for investiga-
ton of natural processes has to be justified by some
ind of verification. Usually these verifications for
hermal models are confined to comparison with
inalytical solutions for some simple cases with con-
tant initial and boundary conditions (e.g. Neurmann
olution). Numerical models are not often verified
1sing measured temperature data and are seldom
ompared to each other running with the same set of
nput data. In this paper, three models which employ
ifferent numerical methods and different treatments
f freezing and thawing will be compared with each
ther, with analytical solutions, and with measured
emperature data,

. Model descriptions

All three models have been discussed in previous
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publications so only a brief description of the major
characteristics of these models is given in this paper.
The formulation of the Stefan problem in two dimen-
sions is (Moiseenko and Samarsky, 1965):

div
C(T. x. »)-—-—,/K(T X, y)VT], C(T“?)@*’
(x.x.2) €D.T=T(x,y, 1)+ T, (l)

where T(x, v.£) is the temperawre field in the
time-space domain D={0<x<[;0<y<;0<
t<t;}, T, is the temperature of the phase transition.
C is the volumemc heat capacity, and K(T, x. v) is
the thermal conductivity. The initiai and boundary
conditions are:

T(x, 3,0)=Ty(x,¥). (2a)
T ar T

3t Lo i femr, O ey, T8 (2b)
T{x0,0)=d(x.1) (2c)

where {d)/(dn) is a normal derivative, g is the
temperature gradient at the lower boundary of the
domain O and (., ¢} is the lemperature change at
the ground surface. The Stefan conditions at the
phase boundary are:

T(x,v,0)=T, {(3)
O(x. ) 52 = {[(KP T)lps o= (KVT)lp_o].,

veb} : (4)

with P& ®(x, y.t)=0. where P=P(x, v. 1) is a
point 1n an area D with coordinates . v,: and
D(x.y,2)=0 is the phase boundary equation in
mplicit form. Q(x, v) is the latent heat of phase
transitions. P + 0 is an index that denotes the limit-
ing value for a process that starts in a region with a
higher enthalpy and proceeds towards a point on the
phase front, P —0 is an index denoting a similar
value but for a process starting in a region with
tower enthalpy.

The Goodrich model is a one-dimensional finite
difference model of heat flow in soils with phase
changes, which includes the thermal effect of a snow
cover with changing thicknesses and characteristics
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“during the winter {Goodrich. 1976, 1978a.b, 1982a).
It uses a central time finite difference equation for
layered systems. The freezing and thawing interface
1s treated by a front tracking method which is capa-
ble of good accuracy for problems with ail phase
change at a fixed temperature. In case of the pres-
ence of two phase boundaries (during the freeze-up
period), the heat flux between boundaries is assumed
to be zero. This is justified by the fact that at a phase
interface the heat flux from within the regton bounded
by two phase planes. diminishes rapidly (in a few
days) and the temperatures in this zone quickly
approach the freezing point (Osterkamp and Ro-
manovsky, 1997). The model was modified to in-
clude unfrozen water and temperature-dependent
thermal soil properties using an apparent heat capac-
ity method which is the same as in the
Guymon /Hromadka model.

The temperature at the surface of the ground
during the summer and at the surface of snow during
the winter must be defined for the upper boundary
condition. Input data also include the lemperature or
heat flux at the lower boundary as a function of time.
The option to use linearized heat balance boundary
conditions (Goodrich, 1982b) was also included.
Snow cover thickness and density have to be de-

scribed and an option allows density and thickness of

the snow cover to be determined from the fresh snow
thickness and density. Thermal properties of snow
can be defined in the input data or calculated in the
program. Calculational outputs are the dynamics of
the ground and snow temperature fields.

The Guymon/Hromadka mode! is a two-dimen-
sional finite element model for simulation of heat
and moisture flow in unsaturated soils with phase
change (Qsterkamp and Gosink, 1991), which is a
modified version of the Guymon and Hromadka
(1977) and Guymon et al. (1984) model. The modi-
fied version includes two possibilities for calcuiating

the freeze front position. One is a delta function-

formulation where latent heat releases or absorbs
completely at a specified freezing point temperature
with step function changes at the freeze front for the
thermal properties. The second formulation provides
for the possibility of unfrozen water in the frozen
so1ls based on an apparent heat capacity approach
with temperature-dependent thermat properties of the
sotls. This computer model was tested and identified

as being physically realistic and appropriate for
freezing soil conditions in Interior Alaska (Gosink et
al.. 1988). Temperature-dependent thermal properties
were calculated using equations from Osterkamp
(1987).

The Seregina model is a two-dimensional finite
difference formuiation of the equations for hear flow
in nonhomogenecus soils with phase changes
(Seregina, 1989; Romanovsky et al., 1991a,b: Garag-
ulya et al.. 1995). This model employs the enthalpy
method where the heat capacity term in Eq. (1) is
replaced by the time derivative of the enthalpy:

T _ 0H :
CE(T.I,’C. }‘)TI'= _Z‘T (5)

where C, is an apparent heat capacily and H is
enthalpy (Moiseenko and Samarsky, 1965; Alexiades
and Solomon, 1993). The enthalpy and thermat con-
ductivities are smoothed by polynomials of the first
order. A completely implicit locally one-dimensional
scheme is used to obtain 2 numerica! solution to this
problem with smoothed coefficients. Iterations are
used 10 solve a discrete system of nonlinear grid
equations. at each time step. The solution from the
previous time step is considered to be the initial
approxtmation of the iterative process. The program
cuts the Ume step in half in the case of iterative
divergence.

3. Evaluation of models with no unfrozen water

All three models were compared with each other
and with the Neumann solution for the case when the
initial and boundary conditions were constant. The
initial surface boundary condition was — 3°C chang-
ing 10 a constant 10°C instantangously in a step
change for the period of calculations (1 year), Ther-
mal conductivities in the frozen and thawed states
were 1.97 Wm™ K™ and 339 Wm™' K¢ and
volumetric heat capacities were 2.9 MJ m~3 K-!
and 2.1 MJ m™ K~!, respectively. Volumetric
moisture content was 0.4,

A sensitivity analysis of the models to the size of
depth and time steps used two different sets of depth
steps. One set consisted of 200 depth intervals from
the surface to 100 m with the smallest step 3.1 m
beiween O and 10 m depth and the largest step 2 m
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(between 60 and 100 m). The depth step increased
sradually from 0.2 to 1 m between 10 and 60 m.
Another set consisted of 200 depth intervais to the
16 m depth with the smailest step 0.01 m {between 0
and 1 m depth) and the largest step 1.0 m (between
12 and 16 m). Time steps were 1 day, 1 h and 7.2
min. Seven simulations were conducted {simulations
[ through VII in Table 1). Resuits of the simulations
were the daily mean temperatures during 1 year of
simulation (365 rows) at 16 different depths {within
the upper | m the output interval was 0.1 m, between
!l m and 2 m, 0.2 m, and the last depth in the output
file was 2.5 m). Resulis of comparisons of the root
mean square (RMS) deviations between each pair
(5840 components of the output matrices for any iwo
models) of calculated daily mean temperatures dur-
ing the whole year in the depth interval between O
and 2.5 m are shown in the Table 2.

Table 2 shows RMS deviations of less than 0.13°C
between calculated temperatures using different
models, time and space steps except for the results
tnvolving simulation III where the differences were
0.21% to 0.29°C. Moreover, the largest deviations in

Table 2

Root mean square deviations between each pair of calculared daily
mean temperatures {in “C} in sunularions { through V1§ and using
the Neumann solution

simutations I through IV and especially simulation
V1 occurred during the first 10 days of calculations,

These results wouid appear to jusiify the use of the !

modeis for calculating the thermal regime of the
active layer and permafrost. However, the following
wiil show that this conclusion may be premature in
some cases. '

Calculaiions using measured daily mean ground
surface temperatures {(Romanovsky and Osterkamp.
1995} for 1989 near Franklin Bluffs in the Prudhoe
Bay region, Alaska, which changed rapidly with
time, were used to test the modeis for application to
ficld data. Thermal properties and moisture contents
of the soils were the same as in the first series. This
combination of input data provided an active layer
thickness of 1.4 m. Seven simulations (VIII through
XIV) were conducted using different models and
different time and depth steps (Table 1). The values
of RMS deviations between these simuiations were
calculated as for the first series and the resalts are
shown in Tabie 3. Calculated RMS deviations were
significantly larger than those shown in Table 2. The
values for simuiations VIII and for XII are unaccept-

Table 3 .
Root mean square deviations between each pair of calculated daily
mean emperatures (in °C) in simulagons VI through XIV

Simulations [ [l m v v vi VI Newmann

i D12 021 012 010 0.1 012 0.10 Stmulatiens VT IX X X1 X XM Xiv
it 028 003 004 004 0.04 00 Vil l41 132 136 062 117 123
1l 039 026 027 023 026 1X 042 034 133 079 036
v £.03 0.02 0.03 003 X 02t 142 048 035
¥ 0.01 0.03 001 X1 1,34 033 422
VI 0.02 0.01 Xl 1.23 137
Wil 0.03 X 0.35
Neumann Xiv

Table !

Models. time steps and minimait depth steps used in gach of

fourteen simulations

Simnulations  Model Time step  Minimal depth step /maximal depth (m)

land ¥III Guymon/Hromadka | day a1 /100

T angd [X Guymon/Hromadka | h 0.1 100

1 and X Guymon/Hromadka | day 0.01/16

IV and X1 Guvinon/Hromadka Lh 0.01/16

YV and Xil Goodrich 1h 0.1 /100

VIand XHI  Goodoch 7.2 min 001 /16

Viiand XIV Seregina I'h 0.01/16
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"ably large {more than 1°C). Moreover, the behavior
of the calculated vaiues in these (wo simulated temn-
perature fields (VIII and XII) show unrealistic fea-
tures where. after freeze-up, a ‘thaw bulb’ appeared
at the permafrost surface and moved downward dur-
ing the following 2 months. However, the Goodrich
and Guymon /Hromadka models have been shown to
predict active layer and permafrost temperatures reli-
ably when using smail time and depth  steps
(Romanovsky and Osterkamp, 1997). It is concluded
that, using large time and space steps, the models
cannol reproduce the temperature field dynamics in
the active laver and permafrost.

Simulation V in the first series, which was the
analogy for XII (Table 1), showed the best agree-
ment with the Neumann solution. Thus.. agreement
with the Neumann solution is a necessary condition
but not a sufficient one to justify the use of the
models for calculating real temperature fields in case
of rapid temperature changes at the ground surface,

The differences between the Guymon /Hromadka
and Goodrich models for smail time and space sleps
(XTI and XIII) appeared after the start of active layer
freezing from the ground surface downwards. Devia-

tions in RMS values between these two simulations
during the first 260 days is only 0.03°C with a
maximum difference of (.15°C for all depths. Addi-
tional calculations using the Goodrich mode] (results
not included .in the Table 3) with different time and
depth steps showed. that to predict the thermal regime
of the active layer and permafrost in real situations
with reasonable accuracy {within 0.3-0.4°C), the
ume step should not be longer than t h and depth
step in the upper 1 m not larger than 0.02 m. Using
the Guymon /Hromadka madel, this accuracy can be
reached with | h time steps and 0.1 m depth sieps
within the upper 1 m depth or 1 day time steps and
0.01 m depth steps. However, the possibility of using
larger steps does not necessarily decrease the time of
calculations compared to the Goodrich model. Com-
putational time is approximately equal in these two
cases. because the i(wo-dimensional
Guymon /Hromadka model generally is more time
consumning than the one-dimensional Goodrich mode]
(for the same time and depth steps).

Additional calcuiations using the Goodrich modei
show that the size of acceptable time and depth steps
for this mode! depends sirongly on the rate of active

DEADHORSE #il |
1987-1988 / vy

TEMPERATURE (%)

0 100 200 300
1987

400 500 600 700
1988

TIME (days,years)

Fig. 1. Companison between caiculated temperatures (dashed lines and open symbols) and measured temperatures (solid lines and filled
symbols) at thres depths (9,12, 0.42 and 0.72 m) during 1987 and 1988 at the Deadhorse site in the Prudhoe Bay region, Alaska.
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. Ia'yer thawing which is a function of the thermal
parameters of the scils (thermal conductivity and
latent heat of the soil moisture) and the temperature
regime at the ground surface. In some caiculations
with the above input data, even | h time steps and
0.1 m depth steps were too large to obtain physically
reasonable results. At the same time. calculations
using West Dock site conditions (active layer thick-
ness between 0.2 m and 0.4 m) showed that the
results of simulations with 7 min time steps and 0.01
m depth steps could be reproduced to within 0.1°C
with 3 h time steps and 0.1 m depth steps. Therefore,
the choice of optimum time and depth steps appears
to vary for each case so that special care is necessary
in applying the model. :

,An additional constraint on the Goodrich model is
that it can become unstable when more than two
phase boundaries are present. For example, in the
case of a freezing active layer there are two moving
phase boundaries separated by a isothermal region.

However. a short period of thaw ai the ground
surface followed by refreezing introduced two more
phase boundaries near the ground surface. This
sometimes caused the mode} to become unstabie
although a new version being developed may solve
this problem (L.E. Goodrich, pers. commun. ),
Results of calculations using the
Guymon/Hromadka and Goodrich models were
compared with each other and also with the mea-
sured temperature data in the actjve layer and per-
mafrost at the West Dock site in the Prudhoe Bay
region, Alaska, in 1987 {Romanovsky and Os-
terkamp, 1997). It was found that. for the case of
small time and depth steps (the same as in X and
XTII). the resuits of caicuiations of the daily tempera-
tures using both models differed by only 0.02°C for
the whole year (1987) for {8 depths from Q.02 o
0.87 m. except for 1 day just afier freeze-up, when
the difference reached 0.35°C at the depth of 0.17 m.
The RMS deviation between the results of these two

]
|
|
|

Z |
- |
2 |
= _ ,'
—20f % _:i

[ | !
Osterkamp i J

i 00000 Guymon,/Hromadka H’ |

—25F WXkt Goodrich ]i |

: 2

[ } § |

— 50 B - — N
-12 -t1 -10 -9 -a -6 -3 -4 -3 -2 i o

TEMPERATURE (°C)

ig. 2. Comparnison between the temperature profiies caiculated usin

£ the Guymon /Hromadka and Goodrich models {open symbois) and an

naiytical solution from Osteckamp ¢1987) (solid line) after 10 years when unfrozen water was present in the frozen soil.




~models for the whole year and for all depths was
0.012°C.

Fig. 1 shows an example of a comparison be-
tween calculated temperatures. using the
Guymon /Hromadka model (dashed lines and open
symbols), and measured temperatures (solid lines
and filled symbeois) at three depths (0.12, 0.42 and
0.72 m) during 1987-1988 at the Deadhorse site in
the Prudhoe Bay region, Alaska. This comparison
shows differences between calculated and measured
data of 0.1° 10 0.2°C during the whole year, except
for 30 to 40 days in the Spring (differences up to
0.5°C) and during freeze-up and the following cool-
ing period, when deviations were more than 2°C.
These large errors appear to be associated with the
presence of a significant amount of unfrozen water
in the cooling active layer after freeze-up {Oster-
kamp and Romanovsky, 1997). Additional examples
of the comparison between calculated and measured
temperature data can be found in Romanovsky and
Osterkamp (1997).

4. Comparison of the models with unfrozen water

The Guymon/Hromadka model and a modified
version of the Goodrich model (1o inciude the effects
of urnirozen water) were compared with an analytical
sotution to the problem of freezing and thawing of
soils containing unfrozen water or brine (Osterkamp,
1987). The weighted geometric mean equation
(Lachenbruch et al., 1982) was used to caiculate the
temperature-dependent thermal conductivity K(7°).
Apparent heat capacity. C {7}, and other thermal
properties and parameters were taken from Os-
erkamp (1987). The mass fraction of unfrozen water
wvas calculated using (Osterkamp and Romanovsky,
1997):

w(T)=AIT-EI° + F (6)

vhere T is temperature in degrees Celsius and A. B,
Z and F are empirical constants (A4 = 0.3795, B =
~Q.7790, £=0, and F = 0).

In the apparent heat capacity, the latent heat term:

. =—%LAB|T—E}"“. (7)

3
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The initial temperature was assumed to be — 1.0°C
and the equilibrium temperature of the phase transi-
tions was — 1.6°C. A constant surface temperature of
—12.1°C was appiied instantaneously and main-
tained over the whole period of calculations. Fig. 2
shows the resuits of these calculations for each model
and the analytical solution after {0 years of freezing,
All three temperature profiles are within 0.02°C of

“each other. Since the Guymon /Hromadka model has

been tested and found to be satisfactory for interpres-
ing field data when unfrozen water was present
(Osterkamp and Romanovsky, 1997). this suggests
that the modified version of the Goodrich model can
also be used for these cases. Examples of Compar-
tsons of the calculated and measured temperature
data can be found in Osterkamp and Romanovsky
(1997).

5. Conclusions

Three numerical models for ground thermal
regime calculations based on different numerical
methods and different treatments of freezing and
thawing were compared with each other, with analyt-
ical solutions, and with measured temperature data.
Compartsons with the Neumann solution show RMS
deviations between the models and between simula-
tions with the same models of less than 0.3°C and,
typicaily, less than 0.13°C between calculated tem-
peratures using a wide range of time and space steps.
However, when using field data with rapidly chang-
ing temperatures at the ground surface and with large
time and space steps, the models disagreed with each
other and developed a non-physical feature {thaw
bulb after freeze-up). Using small time and depth
steps, the Goodrich and Guymon /Hromadka modeis
predict acuve layer and permafrost temperatures reli-
abty. Therefore, it is concluded that they cannot
accurately reproduce the temperature field dynamics
in the active layer and permafrost when using iarge
time and depth steps. Thus, agreement with the
Neumann selution is a necessary coadition but not a
sufficient one to jusiify the use of the models in
calculations of real temperature fields. .

With the Goodrich model, time steps not longer
than 1 h ard depth steps in the upper | m not larger
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than 0.02 m have to be used to reproduce the thermal
regime with reasonable accuracy. However. the
choice of optimum time and depth steps appears 10
be specific (o the application. Using the
Guymon /Hromadka model, the same accuracy can
be obtained with 1 h time steps and 0.1 m space
steps within the upper 1 m depth or | day time steps
and 0.01 m space steps. However, the use of larger
steps does not necessarily decrease the time of calcu-
lations compared to the Goodrich model.

When unfrozen water is present in the frozen
soils, the results of calculations using a modified
Goodrich and the Guymon /Hromadka models were
compared with an analytical solution and found 1o
agree within 0.02°C.
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