## Snow Survey Data for the Sagavanirktok River / Bullen Point Hydrology Study: Spring 2006



Snow survey sampling on Coastal Plain, M. Lilly





by

Douglas Kane, Sveta Berezovskaya, Ken Irving, Robert Busey,

Molly Chambers, Amanda Blackburn, and Michael Lilly

July 2006

Sagavanirktok River/Bullen Point Hydrology Project

Report No. INE/WERC 06.03





## Snow Survey Data for the Sagavanirktok River /Bullen Point

## Hydrology Study: Spring 2006

by

Douglas Kane<sup>1</sup>, Sveta Berezovskaya<sup>1</sup>, Ken Irving<sup>1</sup>, Robert Busey<sup>1</sup>, Molly Chambers<sup>1</sup>, Amanda Blackburn<sup>2</sup>, Michael Lilly<sup>2</sup>

A report on research sponsored by the

### **Alaska Department of Transportation and Public Facilities**

July 2006

Sagavanirktok River/Bullen Point Hydrology Project

Report Number INE/WERC 06.03

<sup>1</sup>University of Alaska Fairbanks, Water and Environmental Research Center <sup>2</sup>Geo-Watersheds Scientific, Fairbanks, Alaska

#### **Recommended Citation:**

Kane, D.L., Berezovskaya, S., Irving, K., Busey, R., Chambers, M., Blackburn, A.J., and Lilly,
M.R., 2006. Snow survey data for the Sagavanirktok River / Bullen Point Hydrology Study:
Spring 2006. July 2006, University of Alaska Fairbanks, Water and Environmental Research
Center, Report INE/WERC 06-03, Fairbanks, Alaska, 10 pp.

Fairbanks, Alaska July 2006

#### For additional information write to:

Publications, Water and Environmental Research Center University of Alaska Fairbanks Fairbanks, Alaska 99775 www.uaf.edu/water/

## TABLE OF CONTENTS

| TABLE OF CONTENTS                                            | ii   |
|--------------------------------------------------------------|------|
| LIST OF FIGURES                                              | ii   |
| LIST OF TABLES                                               | ii   |
| DISCLAIMER                                                   | iv   |
| UNITS, CONVERSION FACTORS, WATER QUALITY UNITS, VERTICAL AND |      |
| HORIZONTAL DATUM, ABBREVIATIONS AND SYMBOLS                  | V    |
| ACKNOWLEDGEMENTS                                             | viii |
| INTRODUCTION                                                 | 1    |
| SAMPLING METHOD                                              | 1    |
| SPATIAL DISTRIBUTION OF SNOW SURVEY SITES                    | 7    |
| SNOW DEPTH AND SNOW WATER EQUIVALENT                         | 7    |
| SUMMARY                                                      | 9    |
| REFERENCES                                                   | . 10 |

### LIST OF FIGURES

| Figure 1. Study area and lake location map for the Sagavanirktok River/Bullen Point Region, |
|---------------------------------------------------------------------------------------------|
| North Slope, Alaska, with snow survey sites and meteorological stations                     |

## LIST OF TABLES

| Table 1. Coordinates of mountain snow survey sites established in 2006   | . 4 |
|--------------------------------------------------------------------------|-----|
| Table 2. Coordinates of foothills snow survey sites established in 2006. | . 4 |

| Table 3. Coordinates of coastal plain snow survey sites established in 2006                     | 5 |
|-------------------------------------------------------------------------------------------------|---|
| Table 4. Results of snow survey 2006 for mountain sites: snow depth, snow density and snow      |   |
| water equivalent                                                                                | 5 |
| Table 5. Results of snow survey 2006 for foothills sites: snow depth, snow density and snow     |   |
| water equivalent                                                                                | 6 |
| Table 6. Results of snow survey 2006 for coastal plain sites: snow depth, snow density and snow | 1 |
| water equivalent                                                                                | 6 |

#### DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the accuracy of the data presented herein. This research was funded by the Alaska Department of Transportation and Public Facilities (AKDOT&PF). The contents of the report do not necessarily reflect the views of policies of the AKDOT&PF or any local sponsor. This work does not constitute a standard, specification, or regulation.

The use of trade and firm names in this document is for the purpose of identification only and does not imply endorsement by the University of Alaska Fairbanks, Alaska Department of Transportation and Public Facilities, or other project sponsors.

# UNITS, CONVERSION FACTORS, WATER QUALITY UNITS, VERTICAL AND HORIZONTAL DATUM, ABBREVIATIONS AND SYMBOLS

### **Conversion Factors**

| Multiply                                                                             | Ву                                                            | To obtain                                                                                                               |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| manpiy                                                                               | -,                                                            |                                                                                                                         |
| inch (in.)<br>inch (in.)<br>foot (ft)<br>mile (mi)                                   | <u>Length</u><br>25.4<br>2.54<br>0.3048<br>1.609              | millimeter (mm)<br>centimeter (cm)<br>meter (mm)<br>kilometer (km)                                                      |
| Acre<br>Acre<br>square foot (ft <sup>2</sup> )<br>square mile (mi <sup>2</sup> )     | <u>Area</u><br>43559.826<br>0.407<br>2.590<br>2.590           | square feet (ft <sup>2</sup> )<br>hectare (ha)<br>square mile (mi <sup>2</sup> )<br>square kilometer (km <sup>2</sup> ) |
| gallon (gal)<br>gallon (gal)<br>cubic foot (ft <sup>3</sup> )<br>Acre-ft             | <u>Volume</u><br>3.785<br>3785<br>23.317<br>1233              | liter (L)<br>milliliter (mL)<br>liter (L)<br>cubic meter (m <sup>3</sup> )                                              |
| foot per day (ft/d)<br>Square foot per day (ft²/d )<br>cubic foot per second (ft³/s) | Velocity and Discharge<br>0.3048<br>.0929<br>0.02832          | meter per day (m/d)<br>square meter per day (m <sup>2</sup> /d)<br>cubic meter per second<br>(m <sup>3</sup> /sec)      |
| foot per day (ft/d)<br>foot per day (ft/d)<br>meter per day (m/d)                    | <u>Hydraulic Conductivity</u><br>0.3048<br>0.00035<br>0.00115 | meter per day (m/d)<br>centimeter per second<br>(cm/sec)<br>centimeter per second<br>(cm/sec)                           |
| foot per foot (ft/ft)<br>foot per mile (ft/mi)                                       | <u>Hydraulic Gradient</u><br>5280<br>0.1894                   | foot per mile (ft/mi)<br>meter per kilometer (m/km)                                                                     |
| pound per square inch (lb/in <sup>2</sup> )                                          | Pressure<br>6.895                                             | kilopascal (kPa)                                                                                                        |

#### Units

For the purposes of this report, both English and Metric (SI) units were employed. The choice of "primary" units employed depended on common reporting standards for a particular property or parameter measured. Whenever possible, the approximate value in the "secondary" units was also provided in parentheses. Thus, for instance, stream flow was reported in cubic feet per second (cfs) followed by the approximate value in cubic meters per second ( $m^3/s$ ) in parentheses.

#### **Physical Units:**

#### Temperature:

Water and air temperature is given in degrees Celsius (°C) and in degrees Fahrenheit (°F). Degrees Celsius can be converted to degrees Fahrenheit by use of the following equation:

 $^{\circ}F = 1.8(^{\circ}C) + 32$ 

#### Millivolt (mV):

A unit of electromotive force equal to one thousandth of a volt.

#### Vertical Datum:

In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929), a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called *Sea Level Datum of 1929*.

#### Horizontal Datum:

The horizontal datum for all locations in this report is the North American Datum of 1983.

## Abbreviations, Acronyms, and Symbols

| AC                 | Actual conductivity                                       |
|--------------------|-----------------------------------------------------------|
| ADOT&PF            | Alaska Department of Transportation and Public Facilities |
| ASTM               | American Society for Testing and Materials                |
| atm                | atmospheres                                               |
| С                  | Celsius                                                   |
| DO                 | Dissolved oxygen                                          |
| DVM                | digital voltage multi-meter                               |
| e-tape             | electric tape                                             |
| F                  | Fahrenheit (°F).                                          |
| ft                 | feet                                                      |
| GWS                | Geo-Watersheds Scientific                                 |
| GWSI               | USGS Ground-Water Site Inventory                          |
| km <sup>2</sup>    | square kilometers                                         |
| kPa                | kilopascal                                                |
| lb/in <sup>2</sup> | pounds per square inch                                    |
| m                  | meters                                                    |
| mg/L               | Milligrams per liter                                      |
| μg/L               | micrograms per liter                                      |
| mi <sup>2</sup>    | square miles                                              |
| mm                 | millimeters                                               |
| μS/cm              | microsiemens per centimeter                               |
| mV                 | Millivolt                                                 |
| NGVD               | National Geodetic Vertical Datum                          |
| NWIS               | National Water Information System                         |
| ORP                | oxygen-reduction potential                                |
| ppm                | parts per million                                         |
| QA                 | quality assurance                                         |
| QC                 | quality control                                           |
| UAF                | University of Alaska Fairbanks                            |
| USACE              | U.S. Army Corps of Engineers, Alaska District             |
| USGS               | U.S. Geological Survey                                    |
| WERC               | Water and Environmental Research Center                   |
| WWW                | World Wide Web                                            |
| YSI                | Yellow Springs Instruments                                |

### ACKNOWLEDGEMENTS

This project was funded by grant ADN #2562122, Alaska Department of Transportation and Public Facilities. Field coordination was provided by BP Exploration (Alaska) Inc. Alaska and the Department of Natural Resources provided background data for lakes in the study area.

# Snow Survey Data for the Sagavanirktok River / Bullen Point Hydrology Study: Spring 2006

#### **INTRODUCTION**

Snow on the Arctic Slope of Alaska lasts up to nine months a year. Water contained in snowpack ensures that snowmelt is a major hydrological event each year. Peak discharge resulting from snowmelt is the highest for many rivers on the North Slope, particularly for the largest basins like the Colville, Sagavanirktok and Kuparuk Rivers. Rivers flowing into the Beaufort Sea drain a large area that extends from the Brooks Range through the Northern Foothills and across the Coastal Plain before discharging into the Arctic Ocean. The data on water content of snowpack at the end-of-winter have been collected in the basins of the Central Alaskan Arctic. Snow depth, snow water equivalent (SWE) and snow density have been measured at numerous sites from the Continental Divide (south) to the Arctic Ocean (north) and from the Canning River (east) to the eastern boundary of the Kuparuk River basin (Figure 1, Tables 1, 2, 3).

### **SAMPLING METHOD**

The snowpack water equivalent (SWE) is estimated using double sampling method. Double sampling refers to the measurement of the snowpack by measuring the depth at a number of points and measuring the snow water equivalent (plus the depth) at a smaller number of points.

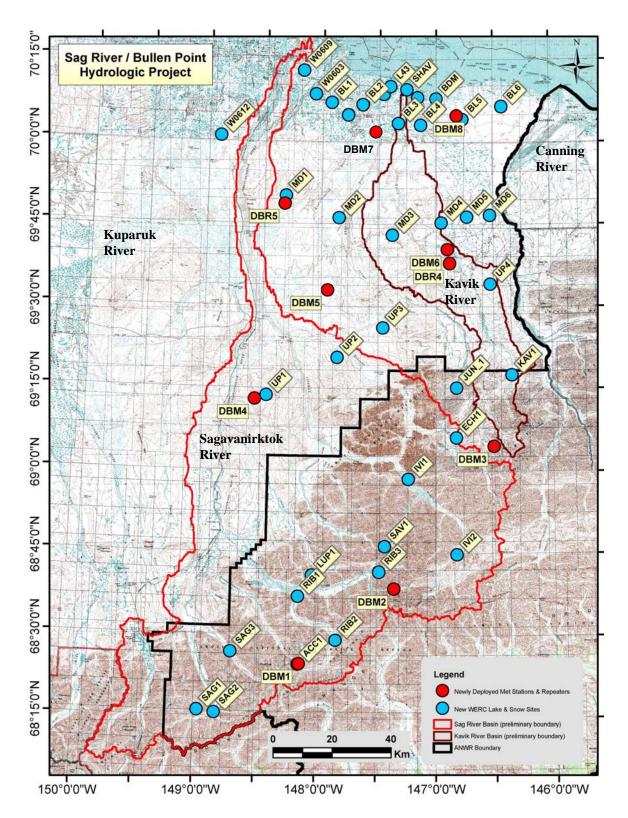



Figure 1. Study area and lake location map for the Sagavanirktok River/Bullen Point Region, North Slope, Alaska, with snow survey sites and meteorological stations.

The approach we use is to measure the snow depth at 50 points along an L-shaped transect with measurements spaced approximately every meter. Twenty-five depth measurements are made on each leg of the L; this strategy is used to account for the presence of snowdrifts in the area of measurement. The directions of measurement are chosen randomly. Five SWE measurements (and accompanying five depths) are taken at each site; from these measurements the density (mass/volume) of the snowpack is determined. Then using this density, with the 50 depth measurements, a new average estimate of the SWE is obtained. This combination of measurements yields an optimal estimate of the average snowpack water equivalent having lower time cost and lower variance, over a larger area, than is possible by measuring just five SWE values (Rovansek et al, 1993).

Snow depth is measured with a T-shaped snow probe. Snow density is sampled with the Adirondack Fiberglass snow sampler (cross-sectional area is 35.7 cm<sup>2</sup>) (Woo, 1997). To obtain site average SWE, mean density (from 5 measurements) is multiplied by mean snow depth (50 measurements). Averages of snow depth and SWE measurements taken at each site are listed in Tables 4, 5, 6.

Table 1. Coordinates of mountain snow survey sites in the Sagavanirktok / Bullen Point area established in

| N⁰ | ID    | ELEV | LAT     | LON      |
|----|-------|------|---------|----------|
|    |       | т    | NAD83   | NAD83    |
| 1  | ACC1  | 1391 | 68.4102 | -148.145 |
| 2  | RIB1  | 609  | 68.6174 | -148.153 |
| 3  | RIB2  | 800  | 68.4848 | -147.836 |
| 4  | RIB3  | 918  | 68.6931 | -147.478 |
| 5  | SAG1  | 730  | 68.2667 | -148.967 |
| 6  | SAG2  | 868  | 68.2597 | -148.826 |
| 7  | SAG3  | 830  | 68.4462 | -148.704 |
| 8  | SAV1  | 955  | 68.7705 | -147.432 |
| 9  | ECH1  | 868  | 69.1022 | -146.825 |
| 10 | IVI1  | 521  | 68.9767 | -147.234 |
| 11 | IVI2  | 810  | 68.7464 | -146.823 |
| 12 | JUN_1 | 615  | 69.2526 | -146.823 |
| 13 | KAV1  | 733  | 69.2920 | -146.348 |
| 14 | LUP1  | 747  | 68.6817 | -148.041 |

2006.

| Table 2. Coordinates of foothills snow survey sites in | the Sagavanirktok / Bullen Point area established in |
|--------------------------------------------------------|------------------------------------------------------|
|--------------------------------------------------------|------------------------------------------------------|

2006.

| Nº | ID  | ELEV LAT |         | LON      |  |
|----|-----|----------|---------|----------|--|
|    |     | т        | NAD83   | NAD83    |  |
| 1  | MD1 | 220      | 69.8350 | -148.317 |  |
| 2  | MD2 | 334      | 69.7688 | -147.849 |  |
| 3  | MD3 | 319      | 69.7170 | -147.380 |  |
| 4  | MD6 | 170      | 69.7772 | -146.530 |  |
| 5  | UP1 | 194      | 69.2276 | -148.454 |  |
| 6  | UP2 | 318      | 69.3439 | -147.850 |  |
| 7  | UP3 | 393      | 69.4356 | -147.460 |  |
| 8  | UP4 | 350      | 69.5689 | -146.530 |  |

Table 3. Coordinates of coastal plain snow survey sites in the Sagavanirktok / Bullen Point area established

| in 2006. |  |
|----------|--|
|----------|--|

| N⁰ | ID       | ELEV | LAT     | LON      |
|----|----------|------|---------|----------|
|    |          | т    | NAD83   | NAD83    |
| 1  | MD4      | 113  | 69.7544 | -146.954 |
| 2  | MD5      | 130  | 69.7721 | -146.731 |
| 3  | WH1      | 47   | 70.0149 | -148.903 |
| 4  | WH2      | 7    | 70.2148 | -148.177 |
| 5  | WH3      | 8    | 70.1443 | -147.463 |
| 6  | WH4      | 35   | 70.0814 | -147.777 |
| 7  | BL1      | 10   | 70.1184 | -147.925 |
| 8  | BL2      | 7    | 70.1126 | -147.649 |
| 9  | BL3      | 43   | 70.0516 | -147.137 |
| 10 | BL4      | 62   | 70.0566 | -147.333 |
| 11 | BL5      | 32   | 70.0689 | -146.769 |
| 12 | BL6      | 29   | 70.1073 | -146.421 |
| 13 | L12      | 4    | 70.1342 | -147.164 |
| 14 | L15      | 11   | 70.1438 | -148.068 |
| 15 | L43      | 5    | 70.1681 | -147.404 |
| 16 | L43-Lake | 5    | 70.1645 | -147.399 |
| 17 | SHAV     | 5    | 70.1586 | -147.259 |
| 18 | BDM      | 4    | 70.1310 | -147.000 |

Table 4. Results of snow survey 2006 for mountain sites: snow depth, snow density and snow water

equivalent.

| Nº | ID      | DATE    | SWE  | SWE SNOW DEPTH SN |      | SNOW DEM | SNOW DENSITY |          |
|----|---------|---------|------|-------------------|------|----------|--------------|----------|
|    |         |         | ст   | in                | ст   | in       | kg/m3        | slug/ft3 |
| 1  | ACC1    | 4/27/06 | 6.0  | 2.3               | 35.0 | 13.8     | 170          | 0.330    |
| 2  | RIB1    | 4/27/06 | 6.0  | 2.3               | 29.8 | 11.7     | 200          | 0.388    |
| 3  | RIB2    | 4/27/06 | 4.0  | 1.6               | 28.3 | 11.1     | 140          | 0.272    |
| 4  | RIB3    | 4/27/06 | 6.7  | 2.7               | 39.7 | 15.6     | 170          | 0.330    |
| 5  | SAG1    | 4/27/06 | -    | -                 | 3.6  | 1.4      | -            | -        |
| 6  | SAG2    | 4/27/06 | 10.6 | 4.2               | 52.9 | 20.8     | 200          | 0.388    |
| 7  | SAG3    | 4/27/06 | 7.3  | 2.9               | 31.8 | 12.5     | 230          | 0.446    |
| 8  | SAV1    | 4/28/06 | 10.1 | 4.0               | 42.2 | 16.6     | 240          | 0.466    |
| 9  | ECH1    | 4/28/06 | 11.4 | 4.5               | 59.8 | 23.5     | 190          | 0.369    |
| 10 | IVI1    | 4/28/06 | 5.1  | 2.0               | 25.6 | 10.1     | 200          | 0.388    |
| 11 | IVI2    | 4/28/06 | 7.5  | 3.0               | 39.5 | 15.6     | 190          | 0.369    |
| 12 | JUN_1   | 4/28/06 | 8.8  | 3.5               | 49.1 | 19.3     | 180          | 0.349    |
| 13 | KAV1    | 4/28/06 | 2.1  | 0.8               | 11.2 | 4.4      | 190          | 0.369    |
| 14 | LUP1    | 4/27/06 | 8.7  | 3.4               | 39.5 | 15.6     | 220          | 0.427    |
|    | Average |         | 7.3  | 2.9               | 34.9 | 13.7     | 194          | 0.376    |

| Nº | ID      | DATE    | SWE  |     | SNOW DEPTH |      | SNOW DENSITY |          |
|----|---------|---------|------|-----|------------|------|--------------|----------|
|    |         |         | ст   | in  | ст         | in   | kg/m3        | slug/ft3 |
| 1  | MD1     | 5/3/06  | 11.8 | 4.6 | 33.6       | 13.2 | 350          | 0.679    |
| 2  | MD2     | 5/3/06  | 8.7  | 3.4 | 36.1       | 14.2 | 240          | 0.466    |
| 3  | MD3     | 5/3/06  | 10.6 | 4.2 | 50.4       | 19.8 | 210          | 0.407    |
| 4  | MD6     | 5/3/06  | 5.1  | 2.0 | 13.4       | 5.3  | 380          | 0.737    |
| 5  | UP1     | 4/29/06 | 4.8  | 1.9 | 24.0       | 9.4  | 200          | 0.388    |
| 6  | UP2     | 5/3/06  | 7.1  | 2.8 | 32.1       | 12.6 | 220          | 0.427    |
| 7  | UP3     | 5/3/06  | 6.6  | 2.6 | 36.8       | 14.5 | 180          | 0.349    |
| 8  | UP4     | 5/3/06  | 5.8  | 2.3 | 25.3       | 10.0 | 230          | 0.446    |
|    | Average |         |      | 3.0 | 31.5       | 12.4 | 251          | 0.488    |

Table 5. Results of snow survey 2006 for foothills sites: snow depth, snow density and snow water equivalent.

Table 6. Results of snow survey 2006 for coastal plain sites: snow depth, snow density and snow water

equivalent.

| Nº | ID       | DATE    | SWE  |     | SNOW DEPTH |      | SNOW DENSITY |          |
|----|----------|---------|------|-----|------------|------|--------------|----------|
|    |          |         | ст   | in  | ст         | in   | kg/m3        | slug/ft3 |
| 1  | MD4      | 5/3/06  | 5.8  | 2.3 | 29.0       | 11.4 | 200          | 0.388    |
| 2  | MD5      | 5/3/06  | 6.6  | 2.6 | 25.4       | 10.0 | 260          | 0.504    |
| 3  | WH1      | 5/3/06  | 9.0  | 3.5 | 30.9       | 12.2 | 290          | 0.563    |
| 4  | WH2      | 5/2/06  | 13.9 | 5.5 | 38.6       | 15.2 | 360          | 0.699    |
| 5  | WH3      | 5/2/06  | 11.3 | 4.4 | 38.8       | 15.3 | 290          | 0.563    |
| 6  | WH4      | 5/2/06  | 10.5 | 4.1 | 42.0       | 16.5 | 250          | 0.485    |
| 7  | BL1      | 5/2/06  | 12.3 | 4.9 | 53.6       | 21.1 | 230          | 0.446    |
| 8  | BL2      | 5/2/06  | 9.4  | 3.7 | 34.9       | 13.7 | 270          | 0.524    |
| 9  | BL3      | 5/3/06  | 9.4  | 3.7 | 36.0       | 14.2 | 260          | 0.504    |
| 10 | BL4      | 5/3/06  | 11.8 | 4.7 | 43.8       | 17.2 | 270          | 0.524    |
| 11 | BL5      | 5/3/06  | 14.1 | 5.5 | 48.5       | 19.1 | 290          | 0.563    |
| 12 | BL6      | 4/30/06 | 6.8  | 2.7 | 23.5       | 9.3  | 290          | 0.563    |
| 13 | L12      | 4/30/06 | 11.1 | 4.4 | 30.9       | 12.2 | 360          | 0.699    |
| 14 | L15      | 4/30/06 | 12.2 | 4.8 | 34.8       | 13.7 | 350          | 0.679    |
| 15 | L43      | 4/30/06 | 6.2  | 2.4 | 26.3       | 10.4 | 240          | 0.466    |
| 16 | L43-Lake | 4/30/06 | 6.9  | 2.7 | 23.7       | 9.3  | 290          | 0.563    |
| 17 | SHAV     | 5/3/06  | 9.2  | 3.6 | 35.5       | 14.0 | 260          | 0.504    |
| 18 | BDM      | 4/30/06 | 3.2  | 1.2 | 15.1       | 5.9  | 210          | 0.407    |
|    | Average  |         | 8.7  | 3.4 | 33.1       | 13.0 | 265          | 0.514    |

#### SPATIAL DISTRIBUTION OF SNOW SURVEY SITES

Snow survey sites are chosen to represent snow characteristics over a wide range of vegetation and terrain conditions within the domain. The total elevation range within the area bounded by the Sagavanirktok River on the west and the Canning River on the east is from sea level to 8025 ft (0 to 2446 m). Snow water equivalents are measured at elevations from 0 to 4564 ft (0 to 1391 m) in the Brooks Range for the area from the Sagavanirktok River on the west to the Canning River on the east (Tables 1, 2, 3). These are the first snow survey data collected/available for this area.

Liston and Sturm (2002) mentioned that there are two distinctly different snow regimes across the adjacent Kuparuk basin, uplands and coastal. Using this knowledge, snow sites over the Sagavanirktok River domain are classified over the coastal plain (Table 3) and uplands (i.e. foothills and mountains). The coastal sites are the sites located below elevation isoline of 500 ft (152 m) and those above are referred as uplands sites. Uplands snow sites are, in turn, separated into foothills and mountains, based on surrounding topography (Tables 1, 2). Elevation is not representative, because in the mountains regions most of the snow survey sites are located in the valley bottoms that can be safely accessed by helicopter (Figure 1).

### SNOW DEPTH AND SNOW WATER EQUIVALENT

Snowpack water equivalent distribution is highly heterogeneous over the area. On local scale of few hundred of meters, it results from interaction between vegetation, terrain and wind-blowing 7

snow redistribution. It also varies on a regional scale of several tens to hundred of kilometers, in response to regional precipitation, air temperature, humidity and wind gradients (Liston and Sturm, 2002).

Average coastal plain densities (0.514 slug ft<sup>-3</sup> / 265 kg m<sup>-3</sup>) are similar to foothills average snow density (0.488 slug ft<sup>-3</sup> / 251 kg m<sup>-3</sup>) and higher than mountains average snow density (0.376 slug ft<sup>-3</sup> / 194 kg m<sup>-3</sup>). The difference between average snow density from coastal and mountainous sites is 27% (Tables 4, 5, 6).

Coastal plain average snow water equivalent is 3.4 in (8.7 cm), and snow depth average is 13.0 in (33.1 cm). Foothills average snow water equivalent is 3.0 in (7.6 cm), and snow depth average is 12.4 in (31.5 cm). Mountains average snow water equivalent is 2.9 in (7.3 cm), and snow depth average is 13.7 in (34.9 cm).

Due to complex terrain and wind interaction in uplands, a simple average from point observations in mountains (Table 4) is not recommended to consider as the aerial SWE estimate. The reason for that is the location of the most uplands sites at the valley bottoms. The northsouth trending valleys of the Brooks Range are subjected to strong katabatic winds that contribute to snow redistribution and sublimation processes. Liston and Sturm (2004) suggested that reduced snow cover in these areas is thought to be the result of these strong winds flowing through the valleys towards the north. Please, refer to work plan 2006 (snow data analysis section) that contains detailed description of methods and models to quantify realistically the spatial snow water equivalent distribution in the domain before onset of ablation.

#### SUMMARY

2006 snow data survey is considered to be a base dataset for successful estimation of basin wide maximum snowpack water content before melt. In this region no other ground snow information is otherwise available. Compiled dataset will also be used as input into hydrological models for runoff estimation of both gauged and ungauged watersheds. This pattern of snow distribution, with the coastal plain having the highest SWE, was quite similar between the Kuparuk Foothills area and this study. In general, the snowpack was lighter than average and snowmelt was average for this region.

#### REFERENCES

- Liston, G. E., and Sturm, M., 2002: Winter precipitation patterns in Arctic Alaska determined from a blowing-snow model and snow-depth observations. Journal of Hydrometeorology, 3: 646–659.
- Liston, G. E., and Sturm, M., 2004: The role of winter sublimation in the Arctic moisture budget. Nordic Hydrology, 35(4): 325–334.
- Rovansek, R.J., Kane, D.L., and Hinzman, L.D., 1993: Improving estimates of snowpack water equivalent using double sampling. Proceedings of the 61st Western Snow Conference, p. 157-163.
- Woo, M., 1997: A guide for ground based measurement of Arctic snow cover. Report for Atmospheric Environment Service, Canada