SUMMARY OF THE NSF CRYOSLIDERISK WORKSHOP, PENN STATE. MAY 12-13., 2022

ABBREVIATED WORKSHOP AGENDA
MAY 11: An informal icebreaker was held at the Happy Valley Brewing Company.

MAY 12 - DAY 1: Machine learning day, introduction of mass movement hazards in cryosphere

e \Welcome, overview, anticipated outcomes and products (Tong Qiu, Civil and
Environmental Engineering, Penn State)

e Overview of Al/ML for civil engineering and geosciences (Chaopeng Shen, Civil and
Environmental Engineering, Penn State)

e Mass movements in warming permafrost slopes (Stephan Gruber (remote participation),
Geography and Environmental Studies, Carleton University)

e PANEL 1: Applications of AI/ML in mass movement hazard mapping

o Deep learning for mapping retrogressive thaw slumps and landslides across the
Arctic permafrost domain (Ingmar Nitze, Alfred Wegener Institute for Polar and
Marine Research)

o Constructing a large-scale landslide database across heterogeneous
environments using task-specific model updates (Savinay Nagendra, Computer
Science, Penn State)

o Rapid mapping of event landslides using deep-learning (Nikhil Prakash, Colorado
School of Mines)

o Transformation of big imagery into Arctic science-ready products (remote
participation, Chandi Witharana, Natural Resources & the Environment,
University of Connecticut)

e PANEL 2 - Applications of AI/ML in mass movement hazard susceptibility prediction

o Landslide hazard prediction using ML techniques and physics-enhanced ML (Te
Pei, Civil and Environmental Engineering, Penn State)

o Explainable neural network for accurate and interpretable landslide susceptibility
modeling: Part | Background and methodology (Khalid Youssef, University of
California - Los Angeles) Part |l Landslide susceptibility application (Kevin Shao,
University of California - Los Angeles)

e Coffee breaks, lunch, and dinner provided the opportunity for informal networking
between attendees.

May 13 - DAY 2: Integrating Al/ML into mass movement hazard in cryosphere

Summary of Day 1 (workshop hosts)
Understanding permafrost slope dynamics in lowlands with a terrain-cryofacies approach
(remote participation, Eva Stephani, Alaska Science Center U.S. Geological Survey)

e Influence of subsurface properties in rock slope failure (remote participation, Louise Vick,
Geosciences, University of Tromso)


https://scholar.google.de/citations?view_op=view_org&hl=en&org=16275338898850254626
https://scholar.google.de/citations?view_op=view_org&hl=en&org=16275338898850254626

e Mapping permafrost thaw-related slope failures in Alaska’s Arctic National Parks (remote
participation, David Swanson, National Park Service)

e Thinking big: Permafrost Discovery Gateway and Arctic T-SLIP (remote patrticipation,
Anna Liljedalh, Woodwell Climate Institute)

e The 2012 Lituya rock-ice avalanche in Alaska: preliminary insights from remote sensing
and dynamic analysis (Kaushal Gnyawali, University of British Columbia)

e Closing remarks, next steps, overview of second workshop in 2023 (Workshop hosts)

e Coffee breaks and lunch provided the opportunity for informal networking between
attendees.

The CryoSlideRisk Workshop 1 convened on Thursday, May 12, 2022. It was held as a hybrid
meeting, offering the option for attendance depending on location and COVID-19-related
concerns. The following people were in attendance (31 total participants):
Workshop co-hosts: Tong Qiu and Chaopeng Shen (Penn State), Margaret Darrow and
Louise Farquahrson (UAF)
In person: Darren Beckstrand (Landslide Technology), Rafael Caduff (Gamma), Kaushal
Gynawali (UBC), Kaytan Kelkar (UAF), Jiangtao Liu (Penn State), Savinay Napendra
(Penn State), Ingmar Nitzke (Alfred Wegener Institute), Te Pei (Penn State), Nikhil
Prakash (Colorado School of Mines), Alexandra Runge (Alfred Wegener Institute),
Keven Shao (UCLA), John Thornley (Golder), Khalid Youssef (UCLA)
Online: Lukas Arenson (BGC), Nicole Benshoff (NPS), Matt Billings (ADOT&PF), Denny
Capps (NPS), Jeff Currey (ADOT&PF), Nicole Guinn (University of Houston), Stephan
Gruber (Carleton University), Line Rouyet (NORCE Norwegian Research Centre AS),
Eva Stephani (USGS), David Swanson (NPS), Mahendra Udawalpola (University of
Connecticut), Louise Vick (Arctic University of Norway), Chandi Witharana (University
of Connecticut)

mm f di ion on overview presentation h ng Shen an han
Gruber)
A lot of what we are trying to understand lurks at depth (literally). A nice summary from
Stephan’s presentation indicated that climate change is a major driver, ground ice is a key
determinant, and understanding processes is key in anticipating where hazards will occur. An
important question that arose early on is, “How do we choose what we want to answer?” This
question was raised by others in the discussion, identifying that we need to have data to help us
prioritize what areas are fixed first. We are also trying to address concerns and changes that
we (modern people) have not experienced in the past. The past is no longer the answer to the
future. An additional complexity is that ground temperatures differ from air temperatures; there
is a lag that depends on the amount of ice in the ground, so we cannot directly link air
temperatures to ground processes. We also do not really know where the ground ice is, or what
type of ice is present. Do we already have mathematical equations that describe these hazards,
or are there parameters/processes/pieces of the process that we just do not know? We need to
use machine learning (ML), which is based on previous patterns, to address permafrost



degradation, which is currently occurring along novel trajectories. This will require many
discussions to build the understanding necessary between permafrost scientists/engineers and
the ML community. This will take time and good communication.

Key takeaways: In order to address infrastructure adaptation due to mass-movement hazards
amid climate change in the cryosphere, we need to predict a sequence of processes:
atmospheric warming, permafrost thaw, mass-movement risk, and vulnerability of infrastructure,
where our ability to predict each process is dependent on the accuracy/reliability of our
prediction of the previous process. ML can help with these predictions; however, we need to
build adequate understanding between permafrost researchers, practitioners, policy makers,
and ML specialists. Dialogs and workshops like this will be helpful and needed.

Summa
handi Witharana - fo ed on Applications of Al/ML in mass movement hazard mapping

Challenges raised in this group of presentations included delineating mass movement extents
through ML. Training to determine linear features is good to delineate headwalls, but perhaps it
could be done in reverse by delineating the polygon, and then finding the highest point as the
head scarp. We also need good quality spatial data at a high temporal resolution, as things are
constantly changing. Inimages, cloud cover presents challenges but can be masked out, this
just takes additional steps in the workflow.

Challenges arise due to different geographic regions having different image quality, different
vegetation cover, different topography, etc., making it difficult to apply one workflow to multiple
regions or areas. To be more robust, ML needs to incorporate training data from a wide range
of locations. The lack of vegetation in a retrogressive thaw slump (RTS) is an example of how
the characteristics of landslide features can vary, even within a single feature. The head scarp
has a lack of vegetation and a sharp topographic expression, but on the lower body, the
vegetation grows back more quickly. One area of interest is to develop an algorithm to analyze
the vegetative differences on the landslide body to define the edges. One problem with this is
that these features are small and this spatial variability may not be identifiable in more widely
accessible satellite imagery of a medium to low (e.g., >3m) resolution.

A key issue that arose is that models trained on only one region are not transferable. Members
of the workshop group presented and discussed different ML approaches, and cost/time savings
associated with each. Some deep learning (DL) models identify clusters of features as one
feature, missing the parts that separate them. Mapping features from more than one year is
valuable, to see change with time. Practitioners indicated that these applications will be
valuable for mapping and selecting future infrastructure corridors.

What we discussed at this workshop is not limited to the cryosphere. ML can be applied to
disaster relief efforts (e.g., Prakash’s presentation). It is important to understand the scale of
the disaster; hence, fast mapping is critical, even with sacrificing certain accuracy. When a
disaster occurs, even if people living in the area have the expertise to help with the relief, they
are also personally affected by the disaster, and may not have the infrastructure (such as



electricity, lodging) to do the necessary analysis. Mapping should be done by an outside group.
To help others, there should be a global network that updates a global inventory week by week.
Take an area of seismically-triggered landslides - are they all dangerous? We may want to
focus on those that block valleys because of breakout flooding, or those that block roads
because they impede relief efforts. To determine this, responders need a hotspot map or a risk
map, etc. There needs to be large-scale automated mapping to avoid the need to do this
processing at critical times. Some data sources are restrictive; not all countries have access to
the data. A remote sensing group that assists first responders, like the GEER group, could help
with the response work.

Key takeaways: Using ML to map mass-movement hazards has great potential but also comes
with challenges associated with the lack of a global (or even regional) landslide databases
(which are expensive and time consuming to build), unique landslide spatial features, and poor
transferability of ML models trained from an ecoregion or a mass-movement type to another;
however, reliable and accurate maps for future mass-movement hazards will be useful for
practitioners and policy makers for infrastructure planning purposes.

Summary of Panel Il discussion (presentations by Te Pei, Khalid Youssef, Kevin Shao - Applications
of Al/ML in mass movement hazard susceptibility prediction )

Incorporating geologic/engineering parameters and knowledge into ML models is valuable, yet
difficult to obtain and often regionally inconsistent. Models can and should be modified based
on expert opinion and domain knowledge. Which type of model or approach is the right one?
Are some better for some applications? Do we try several and compare the results? Are there
time constraints or constraints based on computing power? Physics-guided machine learning
(PGML) is an emerging paradigm in ML. It aims to leverage the complementary strength
between domain knowledge and the power of data science. PGML is promising as a linkage
between permafrost and ML communities in integrating permafrost knowledge into ML
algorithms to improve the prediction of atmospheric warming, permafrost thaw, mass-movement
risk, and vulnerability of infrastructure.

Summary of general group discussion at end of Day 1
e Existing geohazard maps are great (albeit, large scale), but they take time to prepare

and they are static. How do we modify those to account for a changing climate?

e At the site-specific scale, analysis involves putting instruments in the ground to create a
precise design mitigation. Applying ML to large-scale problems is a struggle, but adding
in geologic parameters has promise. There are different geo-datasets from geologic
mapping, including soil surveys that have near-surface soil distribution including
strengths or other properties.

e Risk means different things to different people. |s a landslide that is moving in the
middle of nowhere a human problem? From an infrastructure perspective, it can be
reduced to dollars. Are we going to have to plan for it? Will there be impacts due to
climate and permafrost degradation?

e When we look at mass movements, are they gravity-driven processes or phase-driven
processes? What do we understand, and how do we classify them? This is important



when considering ML. We need to extract resilience based on changes in probability
and how climate change is affecting probability of failure.

As an overview of ML, there are purely data-driven models - if you have a large amount
of data, these are the best-performing models. It is possible to add some additional
constraints, such as the soil/rock properties. In this case, the model uses fundamental
aspects of machine learning, resulting in a process-based assessment. Philosophically,
do you think the laws are true? If there is unknown knowledge, then this differential
approach is the way to fill in gaps, train with less data than the purely data-driven
models. We can pose a question, assuming that the other parts are relatively robust, so
that we know what to fill in and what to learn. For mass movement, the community of
practitioners can provide data sets or parameters that contribute to slope failure. Can
ML be used to identify those data gaps? Can we use ML results as a tool to go back
into the field to measure something that we are now overlooking?

Constraining the model and the process is the way to go. A long-term goal may be to
incorporate domain knowledge from different data sets and drive forward. With
computational processes, this would incorporate domain knowledge from all groups.
One of the issues is that we do not have enough data, because we typically only look at
hazards that really affect the infrastructure corridors. If we work with a larger data set
that incorporates areas away from communities and infrastructure, this may help us to
determine the different mechanisms of failure.

Typically, field studies are constrained to local areas. ML may help us grow that data
base and expand the knowledge on what is causing slope failures. The field
investigators are focused on subsurface properties. How can DL techniques use areas
where we have this information, and then expand into other areas using remote sensing
data?

Data limitations are huge: we have only rudimentary ground ice maps; little
understanding of ground ice distribution in mountainous environments, type of ice (i.e.,
pore ice, massive ice), and a lack of understanding of the permafrost degradation
mechanisms in mountainous environments. This is an issue because ice is often a key
element in slope stability in permafrost-affected regions and when it melts it can
drastically weaken slope strength. We sometimes find ice where we do not expect it;
perhaps we do not completely understand the processes that formed that ice, or the
processes that operated in the past are quite different than current conditions (e.g., an
avalanche that occurred long ago and was buried with talus, then becomes unstable in a
changing environment). Perhaps formation of ice in the lowlands or buried glacial ice is
easier to understand; mountain permafrost is difficult to predict. There are legacy
effects. Can ML help to fill in the gaps? There are issues with data availability in the
cryosphere. We have only coarse data for first-order estimates. This will be a challenge
with modeling. Another challenge is wildfires — they expose more soil to the
atmosphere, and then more carbon is released, adding to the feedback loop. Mountain
permafrost in the Himalaya gets less attention than other permafrost locations. This will
also degrade and cause slope failures and contamination of reservoirs. Can ML predict
this? Perhaps at this workshop, this is the first group to discuss this type of
convergence.



This situation is not unique to geohazards; it is similar in hydrology. On the positive side,
so many other things that are correlated with the soil properties. We do not have to
understand it completely because of data synergy. If we compile a lot of data across the
entire terrain, then we get something that is more robust. There are more commonalities
than dissimilarities; a variety of data could be helpful.

Let’s say that we have a model; how do you test it? The quantity of data itself is not the
only problem. If we have a few measurements that are spread around, this is better for
training. For ML, we could go to a site to measure all those processes, but also doing
something at a global scale gives us better understanding. When we look at global
patterns, we may be able to see answers that we cannot at the regional scale. We need
automated techniques to look at the global scale.

When we talk about mass movement in the cryosphere, this is a sensitive environment.
Things are dynamic with time. Most of the models ignore this. There needs to be an
emphasis on the timestamp and how long it takes the system to recover from the impact.
Itis critical to include changes with time. For permafrost, we could start by looking at
changes in Alaska from 1950 to 2000, to see if we can identify the lag effect and if
specific areas of the landscape are more susceptible.

We are doing pretty well with landslide mapping. We can greatly increase the extent of
the dataset. There is so much to learn from the data. Now we need to call ML and
permafrost experts and develop synergy. Right now, the applications are so far apart
from each other that it is hard to compare and know what is correct. We need to arrive
at a common ground so that everyone understands... the processes that lead to the
patterns ML predicts.

Let’'s dream big. Practitioners want to have those maps and scroll through time to see
where the hazards are increasing. This can help to answer this dilemma: when you
have funds, where should you invest your limited funds? Which is the most critical
location that requires your investment? Geohazard management is a dream product.
Those in the ML community say that data are the problem and wonder how to scale
better. How are we able to have our community grow together and not individually?

One example of success is RTS mapping. We have already started to have these
datasets for benchmarking and training, have thought about how to build the data set
and how to standardize the digitizing. Then moving forward, all groups will have the
same process. Another example is in the hydrology realm. There is a data set
(CAMELS) with different attributes. It has become a benchmark for people to test. Folks
in other countries started to notice this, and started to have a common data format. One
benefit for the work involved in producing the data set is that all authors get
acknowledged and have high citations. Researchers are out there collecting data — we
can provide them with standardized processes, and they can provide the information. If
we start somewhere and use one data set, when it gets popular, others are going to use
it. We can start with one format, then bring in people from different regions to check it to
ensure it works in different topography/vegetation, etc. (much like the IPA working group
for mapping rock glaciers).

Any DL group focused on this area can start with a low resolution image; with DL, we
can make it have super resolution, but we need data to train it and a standardized way to



train it. The general idea is that if the data are interpolated and increased in resolution,
features that are missed are then detected if it is up-scaled. This is not “faking”
high-resolution data; instead there is ML to apply it to low-resolution data. It is a good
technique to avoid using commercial data. This also could be used to standardize
features among different maps/data sets.

e For slope stability analysis, it is 100% site-specific for cohesion and angle of internal
friction. We take samples from the failure zone, do residual shear strength tests, then
put the results into a stability model and back-calculate strength. This generalizes the
results a bit more. We do the same thing with pore water pressure. We install
instruments into the ground and measure water and slope movement, and correlate to
what triggering factors may exist. We find that the rate of movement has to do more with
the rate of change in water level rather than the water level itself. This is something that
is not typically modeled.

e Perhaps we develop synthetic data sets for landslides, with susceptibility based only on
physics; but we currently do not have enough understanding/rendering of 3-D models to
do ML. Such models do exist for rivers and how they change with time. That may be
the way to go in the future. Having these very detailed simulations can generate
possible scenarios, and then establish trigger levels.

e NEXT STEPS: We need to develop a framework with what the correct milestones
should be or stages necessary to develop the “dream big.” We can take what is needed
from the field-based community as inputs, and then develop a map on where to go next.
What is our strategy for the next steps? Depends on science questions and/ or land
management issues at hand!

The CryoSlideRisk Workshop 1 continued on Friday, May 13, 2022. The following people were
in attendance on Day 2 (28 total participants):
Workshop co-hosts: Tong Qiu and Chaopeng Shen (Penn State), Margaret Darrow and
Louise Farquahrson (UAF)
In person: Darren Beckstrand (Landslide Technology), Rafael Caduff (Gamma), Kaushal
Gynawali (UBC), Kaytan Kelkar (UAF), Ingmar Nitzke (Alfred Wegener Institute), Te
Pei (Penn State), Nikhil Prakash (Colorado School of Mines), Alexandra Runge (Alfred
Wegener Institute), Keven Shao (UCLA), John Thornley (Golder), Khalid Youssef
(UCLA)
Online: Lukas Arenson (BGC), Nicole Benshoff (NPS), Denny Capps (NPS), Jeff Currey
(ADOT&PF), Andy Garrigus (Golder), Nicole Guinn (University of Houston), Stephan
Gruber (Carleton University), Anna Liljedahl (Woodwell Climate Institute), Xiaofeng Liu
(Penn State), Line Rouyet ((NORCE Norwegian Research Centre AS), Eva Stephani
(USGS), David Swanson (NPS), Louise Vick (Arctic University of Norway),

After a quick summary of Day 1, with a check on accuracy by the workshop participants, the
workshop continued with five presentations. The presentations were focused more on
characterizing permafrost in different regions, such as lowlands and mountainous regions. The
following is a summary of that conversation and points raised.



The presentations of ice-rich permafrost in lowland areas and slides in bedrock in mountainous
areas demonstrated different layers with different material properties or ice content. The ML
community said that this aspect was highly relevant in understanding why some slopes failed
and not others. The group pondered if strength properties were tested as a function of
temperature. The presentations illustrated the difficulty in obtaining such data because of
inaccessibility and cost associated with sampling. Failure in mountainous regions was also
attributed not just to the direct thaw of permafrost/melting of ice, but also to melting of snow and
movement of the snow melt through the subsurface, as well as the surface being frozen,
causing high pore pressures. Suction also forms as the surface is frozen. Thawing in the
spring causes pore pressures to build up again. In the winter, even if the rock mass deforms,
there is suction holding the rock mass back, artificially increasing the factor of safety.

Desk-top analysis can be done before going to the field to identify areas of interest. All layers
describing the surface, including snow distribution, water distribution, vegetation including
shrubs, should be evaluated. If the data sets existed, and methods also existed to combine all
of those features to identify problem areas, this would be useful. Perhaps we could use ML to
map our cores better to identify the cryostructure.

The trigger of widespread events was discussed, whether it is gradual warming, or event-driven,
such as heavy rain or snow melt. It is a little of both, although there are little site-specific data
for these remote areas to answer this question. Some shapefiles do exist that can be used as
training sets for ML.

No matter how we train a model, there will be false positives and negatives. We need experts to
interact with those labels to fix them. We need a system where experts can interact with these
data and improve the results. IPA action groups exist for developing protocols to develop
community-wide training data sets for mapping RTS and rock glaciers. Something similar
should be developed for mass movements in general, to develop the same terminology, to
exchange ideas, and to bring in people who are non-experts but would like to learn. We can
have an interface that allows a user interested in a certain area to choose “show me all thaw
slumps,” click on a box, and then the latest model that is pre-trained shows all the thaw slumps.
The interface/web page can have an option where one can choose “I want to work on this
region” and gradually work to correct labels (false positives/negatives).

One case study that described an example of modeling was exciting from a ML perspective. It
represented a start to get a large-scale example that could be used to train a model to create
synthetic data. This could generate new and large amounts of data. We could generate new
scenarios that do not yet exist. This is an exciting prospect for forecasting how things will
change in the future. For events with long runouts, we need some data to calibrate other
events. If we have a source, then we can determine how far it is going to move. With ML, we
can calibrate the runout.



The workshop ended with the workshop hosts providing an evaluation form for feedback, and an
overview of upcoming tasks, such as writing this summary report and collaborating on a
“perspectives” paper.



