National Ecological Observatory Network:

Linking Arctic and Continental Observations

Christopher Baird cbaird@battelleecology.org

NARL 75th Anniversary August 3, 2022

National Ecological Observatory Network (NEON)

...a continental-scale, long-term (30 year) Observatory, funded by NSF and operated by Battelle

Enables:

- Analysis: Free and open data and samples on the drivers of and responses to environmental change
- Comparison: Standardized and reliable framework for research and experiments
- Interoperability: Integration with other national and international network science projects

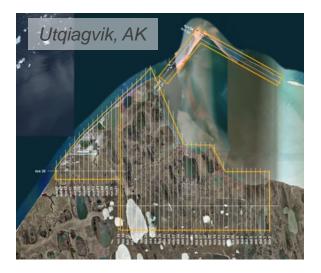
Alaska Core and Gradient sites

Continuous permafrost

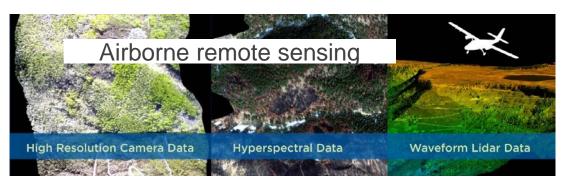
Discontinuous permafrost

Non-permafrost

NEON is a distributed Observatory across the U.S.


NEON's Data Collection Systems

Standardized, co-located methods across sites



Observational sampling

Automated instruments

Terrestrial Sampling Design

	Plants	Soil	1 A CO		Birds	Ground beetles	JAK-	-
Ś		microbes	Small	Mosquitões		X	Ticks	Soil
Diversity	0	0	0	0	0	0	0	
Abundance	0	0	0	0	0	0	0	
Pathogens			0	0			0	
Phenology	0			0			0	
Pools/fluxes: biogeochemistry	0							0
Metabolism		0						
Productivity & biomass	0	0						

182 Data Products

Atmospheric

Organismal

Biogeochemistry

Remote Sensing

H₂O, CO₂ Heat Micromet Isotopes Turbulence Storage Fluxes Abundance Composition Biomass Productivity Pathogens Phenology Marker Genes Metagenomics Water quality Precipitation Discharge Radiation Geomorphology Riparian Structure Soil conditions Chemistry Particulates Foliar characteristics

Spectrometry Hi-Res Imagery LiDAR

https://www.neonscience.org/data

NEON specimens & samples: <u>NEON Biorepository</u>

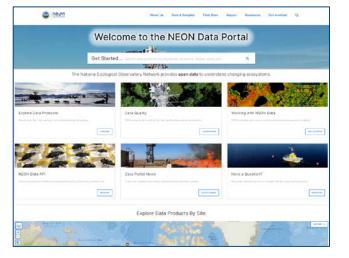
Arizona State

University

65 sample types

- Small mammals
- Fishes
- Ground beetles
- Mosquitos
- Ticks
- Zooplankton
- Benthic macroinvertebrates
- Vascular plants, algae, bryophytes and lichens
- Soil microbes
- Soil
- Dust
- Wet deposition

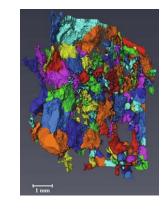
biorepo.neonscience.org

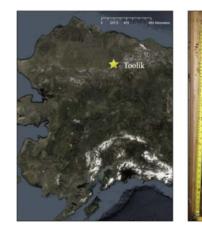


DESIGNED TO SUPPORT THE GENERATION & APPLICATION OF DNA BARCODE DATA

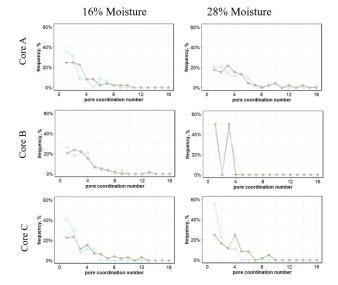
Data portal: data.neonscience.org

- Explore and download FREE data
- Information on programmatic access to NEON data
 - API
 - Code packages
- Access data product user guides, detailed protocols, and other important documents





Case Study: Soil pore network response to freezethaw cycles in Alaskan permafrost aggregates

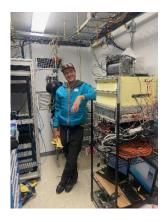

- How do freeze-thaw cycles impact the pore network of newly thawed permafrost soil layers?
- Specifically, how do freeze-thaw cycles impact pore morphology, pore connectivity, and pore throat diameter?
- Freeze-thaw alters the microenvironment of permafrost soil aggregates during the first stage of deformation following permafrost thaw

Rooney, E. C., Bailey, V. L., Patel, K. F., Dragila, M., Battu, A. K., Buchko, A. C., ... & Lybrand, R. A. (2022). Soil pore network response to freeze-thaw cycles in permafrost aggregates. *Geoderma*, *411*, 115674.

🔵 before 🔵 after

Leveraging NEON: <u>Assignable Assets</u>

Site Access & coordination



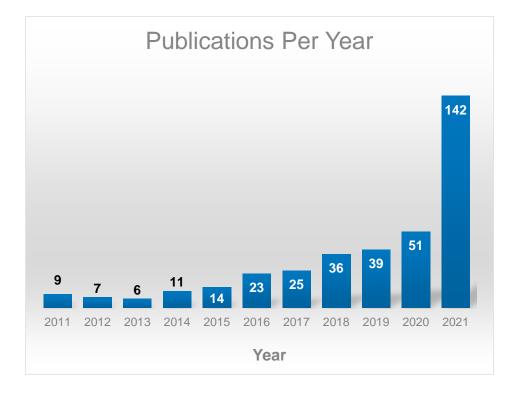
Access to Sensor Infrastructure

Sample Collection

- Access to Observational Sampling Infrastructure (staff and resources)
- Access to Sensor Infrastructure

- Airborne Observation Platform
- Mobile Deployment Platforms

Leveraging Local Capacity


- Partnership with UIC to provide technical training instrumentation, sensor, and tower maintenance
 - UIC technical staff have taken a leading role in maintaining data streams
- Program expanded to incorporate terrestrial science sampling side-byside with NEON staff
- **Goal** is to promote scientific capabilities of UIC staff and leverage their position in the advancement of arctic research

Research enabled by NEON data & specimens

NEON publications, visit: https://www.neonscience.org/impact/paperspublications

NSF News

New NSF center will advance, broaden and catalyze environmental data science

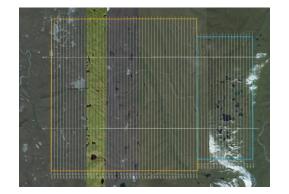
July 11, 2022

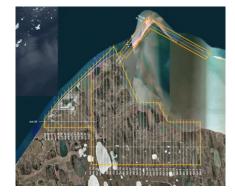
Understanding the impacts of climate change and the loss of biodiversity, and predicting and preparing for extreme environmental disturbances such as wildfires, floods and drought, require combining and synthesizing data sets that provide information at varying scales.

To support the analysis and integration of these data and advance the use of data-intensive approaches and training in environmental science, the U.S. National Science Foundation has announced the creation of the Environmental Data Science Innovation and Inclusion Lab, or ESIIL (pronounced "easel"), through a \$20 million, five-year award to the University of Colorado Boulder. Scientist Jennifer Balch is the principal investigator. The new synthesis center is funded jointly by NSF's Directorate for Biological Sciences and Office of Advanced Cyberinfrastructure.




720.746.4844 | neonscience@battelleecology.org | neonscience.org



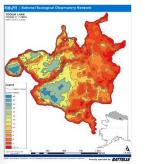

Airborne remote sensing 2022 AOP Campaign Schedule

Payload 1		Payload 3			
Domain	Start Date	End Date	Domain	Start Date	End Date
11 - Southern Plains	4-May	10-May	13 - Southern Rockies & Colorado Plateau	27-Apr	11-May
2 - Mid-Atlantic	13-May	2-Jun	15 - Great Basin	27-Apr	11-May
6 - Prairie Peninsula	5-Jun	16-Jun	7 - Appalachians & Cumberland Plateau	16-May	4-Jun
12 - Northern Rockies	18-Jun	30-Jun	5 - Great Lakes	6-Jun	4-Jul
16 - Pacific Northwest	4-Jul	15-Jul	10 - Great Plains	6-Jul	27-Jul
18 - Tundra	20-Jul	22-Aug	1 - Northeast	1-Aug	26-Aug
14 - Desert Southwest	28-Aug	11-Sep			
7 - Appalachians & Cumberland Plateau	18-Sep	11-Oct			
4 - Atlantic Neotropical	17-Oct	12-Nov			

Field Operations: Aquatic team

Biological

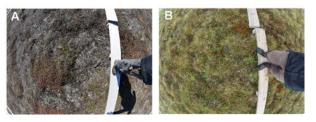
- 3 sites; 3 bio bouts annually
 - Spring
 - Summer
 - Fall


Physical

- Routine measurements of:
 - Discharge
 - Reaeration
 - sediment
- Geomorphology/bathymetry
- Bathymetry

Automated Collections

- Water Quality
- Met station
- Winter & summer data streaming capabilities


Field Operations: Terrestrial team (TOS)

Annual

- Plant Diversity
- Phenology
 - Plants, mosquitoes, ticks
- LAI (tower)
- Soil microbes
- Litterfall collections
- Herb. biomass (tower)
- Carabids and bycatch
- Breeding birds
- Small Mammals

Every 5yrs

- Vegetation Structure
- CDW and bulk density
- LAI & herb biomass (site level)
- Below ground biomass
- Canopy foliage Chemistry
- Soils (nitrogen (N) pools and net N transformation rates)

AOP ground-truthing with canopy chemistry

Toolik Field Station, AK. Photo A: June 7, 2018, Photo B: August 1st, 2018

Field operations: Instrumentation Tower Team • Five tower sites

INCIDENT/SYNOPTIC SCALE

- Climate controlled hut w/ remote monitoring capabilities
- Routine Preventative maintenance on all towers and soil arrays biweekly, year-round
- Researchers can request to add their own instruments to towers and infrastructure

