Freshwater Ecology in Utqiagvik

Christian G. Andresen

Assistant Professor Geography Department University of Wisconsin Madison

Early work in freshwater systems

- Aquatic invertebrates (Chironomidae)
 - 1940s-NARL's Laurence Irving & Per Sholander
 - 1970s- Mac Butler
 - Phenology
 - Life-cycles

1970s Tundra Biome Project The International Biological Program (IBP) **Tundra Ponds** (John Hobbie, Alexander, McRoy, Stanley, Miller, Tiezen)

How are thaw ponds changing over the past 50 years?

Resampling of "IBP" Tundra Ponds starting in 2008

John Hobbie

Vanessa Lougheed, Univ. Texas at El Paso

IBP Tundra Ponds Data Rescue

U.S. TUNDRA BIOME Ecosystem Analysis Studies U.S. International Biological Program

Data rescue by Dr. Vanessa Lougheed (UTEP)

Lougheed et al. 2011

SEASONAL changes in nutrients and algal biomass

Trends hold up over season, and with 3 more summers of data.

Higher CO₂ emissions from freshwater systems

22

20

18

(a)

1971 - 2009-2013 p=0.0004

36

Observed

pCO₂

atm 2018 atm 1973

36

- Streams and ponds have highest CO₂
- Associated to DOC mineralization

What are the impacts of increased nutrients on primary producers?

Lougheed et al, 2015

Benthic algae NDS Change from P limitation (1970s) to Mesocosms 1970s: Phytoplankton limited by phosphorus (P)NP co-limitation (2010s) (whole pond enrichment) 300 250 controls **Benthic** Phytoplankton Ja 150 Percent increase o 0 20 0 50 -50 **IBP** ponds -100 NP Ν P Treatment Shift associated to long-term increase in available P

Further Change at Lower Trophic Levels

Larger & more abundant daphnia

Earlier PEAK ABUDANCE

Era

How is the morphology of ponds changing?

Ponds are shrinking and disappearing

Andresen & Lougheed (2015) JGR-Biogeosciencs

Distance from west edge of polygon (m)

Active layer depth increased No change in water depth

Increased water temperature \rightarrow Thermal erosion

25

15

Andresen & Lougheed, 2015

Why are ponds disappearing?

- Potential ET increase (?)
- Permafrost thaw
 - Lateral drainage (?)
 - Nutrient release (Heikoop et al., 2015, Reyes and Lougheed 2014)
- Vegetation encroachment
 - Increased cover and density (Andresen *et al* 2017, Villarreal *et al* 2012)
 - Implications for energy and carbon fluxes (e.g. Methane)

Biomass & Cover have increased

Andresen et al, 2015, 2016

Aquatic Plants May Accelerate Arctic Methane Emissions

About two thirds of the gas produced by a study area near Barrow, Alaska, came from increasingly abundant greenery covering only 5% of the landscape, researchers estimate.

Andresen et al, 2016

Methane Production in Arctic wetlands will increased atmospheric warming

Aerenchyma

What is happening at a regional scale?

