Getting out of our comfort zones: understanding the food-energy-water (FEW) nexus in remote Alaska communities

UAA

Huntington Consulting

Graduate students

UAF

http://ine.uaf.edu/microfews

jischmidt0@gmail.com

Who is involved?

- Engineers
 - Mechanical
 - Electrical

Modeling

- Civil
- Physical scientist/chemist
- Social scientists with expertise on
 - Socio-economics
 - Hunting and gathering

- Public

Social-ecological systems

Background: Energy in rural Alaska

- Many communities are located off the roads system
- <u>Microgrids</u> supply isolated communities with their own power

What is the issue?

- Food, Energy, and Water (FEW) prices in rural Alaska are very high
- Jobs are limited, income is low, mixed subsistence-cash economies
- Communities want to reduce their carbon footprint
- Diesel is expensive and prices are volatile

Renewable energy in Kongiganak, Alaska

MicroFEWs Research goals

- Better understanding of FEW security
- Learn how renewable energy is being utilized by rural Alaska communities – Can it be improved?
- Need to find ways to optimize the use of excess energy produced by renewable energy projects

Overview of the MicroFEWs Process: Energy Distribution Model

What do we mean by convergent research?

Convergent research in action

Tanana, Alaska

Engaging with communities

Cordova, Alaska

Regardless of your discipline

Overlapping and related ongoing projects = amplified convergence

- Travel is expensive and researchers' time is limited
 - Combine resources

• Facilitate awareness

- Of our work by community members
- Communities needs

Personal interactions =amplified convergence

Convergence within the team

- Communication and <u>terminology</u>
 - Within the team
 - Hold fortnightly meetings
 - Feeling comfortable enough to be honest
 - Team members on call when in communities

Photoaic Resistive Load Inverter Type:

DC max. input voltage: 55V Power factor: >0.99 AC max. cont. output power: 450W AC output current range: 1A-5A DC max. input current: 10 5A×2 Hot surfaces. To reduc touch. Risk of electric shock. sources are terminated Each circuit must be

AP

Convergence with the public

- Terminology and communication
 - Social scientists help translate technical terms into terms used by community members
 - Actively seek out input from the public conferences aimed not at academics but the public
- Incorporating public feedback
 - Give talks at conferences NOT aimed at academics – solicit input

How do we make this information accessible to communities?

Ongoing struggles with convergent research

- Limited time frame and rigidity
 - Feedback from community members and stakeholders is often slower than expected
 - Ask for an extension from NSF
 - Try to capitalize on meetings that bring community members into town
 - Work with other projects doing research either on these topics or in the communities
 - The need to have a flushed-out plan for funders = Tunnel vision
 - This one is hard and is compounded by the short duration of projects
 - Managing expectations
 - Social science can be messy and engineering solutions can too grandiose - talk about it and push each others comfort zones

Conclusions

- Convergence research takes persistence and time
- Having frequent communication and overlapping projects helps – be honest with each other
- Still no good solution for balancing flexibility to incorporate feedback and changing directions mid flow
- BUT....Convergent research is worth it for science and society

Acknowledgements

- Website
 - http://ine.uaf.edu/microfews
- This project is funded by the National Science Foundation Award #1740075 INFEWS/T3: Coupling infrastructure improvements to food-energy-water system dynamics in small cold region communities: MicroFEWs.
- Project Leads: William Schnabel (University of Alaska Fairbanks), Erin Whitney (University of Alaska Fairbanks), Daisy Huang (University of Alaska Fairbanks), Jen Schmidt (University of Alaska Anchorage), Rich Wies (University of Alaska Fairbanks)

Presenter: Jennifer Schmidt¹

Project Team: Erin Whitney², Richard Wies^{2,3,4}, Daisy Huang^{2,5}, Srijan Aggarwal⁶, Aaron Dotson⁷, Craig Gerlach⁸, Justus Karenzi^{2,3}, Harry Penn⁸, Christopher Pike², Daniel Sambor⁹, Barbara Johnson^{1,3}, RJ Valdez², Henry Huntington¹⁰

University of Alaska Anchorage – ¹Institute for Social and Economic Research, ⁷Civil Engineering

University of Alaska Fairbanks – ²Alaska Center for Energy and Power, ³Institute of Northern Engineering, ⁴Electrical and Computer Engineering, ⁵Mechanical Engineering, ⁶Civil Engineering

⁸University of Calgary – Arctic Institute of North America,

⁹Stanford University - Civil and Environmental Engineering, Atmosphere/Energy Program

¹⁰Huntington Consulting